如图,在△ABC中,∠ACB=90°,AC=BC=1,将△ABC绕点C逆时针方向旋转角α(0°<α<90°),得到△A1B1C1,连接BB1.设CB1交AB于点D,A1B1分别交AB、AC于点E、F,求证:△AEF≌△B1ED

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 13:45:43
如图,在△ABC中,∠ACB=90°,AC=BC=1,将△ABC绕点C逆时针方向旋转角α(0°<α<90°),得到△A1B1C1,连接BB1.设CB1交AB于点D,A1B1分别交AB、AC于点E、F,求证:△AEF≌△B1ED
xT]OP+ wein5+9~MM1 H.EIh45B&&\˸_=qr.y=VjLGWb }"v7Ӑ튘HvW#zoQYsA'Ag[[bt D:nov)%wq-UEj~?K˘&2ضw lw[O lit uI &T;NiNnuo?!4"F)&"A|!+1 #@J1(NX/pP4&##q("xC<u4l863Emé <(߲EƎgXp-qg ƛ=Gobxh&4Y4X!,fZ8L.3e+;7\_ky)#

如图,在△ABC中,∠ACB=90°,AC=BC=1,将△ABC绕点C逆时针方向旋转角α(0°<α<90°),得到△A1B1C1,连接BB1.设CB1交AB于点D,A1B1分别交AB、AC于点E、F,求证:△AEF≌△B1ED

如图,在△ABC中,∠ACB=90°,AC=BC=1,将△ABC绕点C逆时针方向旋转角α(0°<α<90°),得到△A1B1C1,连接BB1.设CB1交AB于点D,A1B1分别交AB、AC于点E、F,求证:△AEF≌△B1ED

如图,在△ABC中,∠ACB=90°,AC=BC=1,将△ABC绕点C逆时针方向旋转角α(0°<α<90°),得到△A1B1C1,连接BB1.设CB1交AB于点D,A1B1分别交AB、AC于点E、F,求证:△AEF≌△B1ED
证明:
∵∠ACB=90°,AC=BC=1
∴∠CAB=∠CBA=45
∵△ACB绕点A旋转至△A1CB1
∴∠A1=∠CAB,∠CB1A1=∠CBA,∠A1CB1=∠ACB,B1C=BC
∴∠A1=∠B,∠CAB=∠CB1A1,B1C=AC
∵∠A1CA=∠A1CB1-∠ACD,∠BCD=∠ACB-∠ACD
∴∠A1CA=∠BCD
∴△A1CF≌△BCD (ASA)
∴CF=CD
∵AF=AC-CF,B1D=B1C-CD
∴AF=B1D
∵∠AEF=∠B1D
∴△AEF≌△B1ED (AAS)

证明:∠AEF=角B1ED 对顶角

CA=BC ∠CAB=∠ABC
将△ABC绕点C逆时针方向旋转角α ∠ ABC = ∠C1B1A1= ∠CAB
△AEF 和△B1ED中 :∠AEF=角B1ED ∠C1B1A1= ∠CAB 故∠AFE=∠EDB1
所以:△AEF≌△B1ED