解方程:dy/dx=y/x+tan(y/x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:28:19
解方程:dy/dx=y/x+tan(y/x)
x){|i;~gVJ~Jm~vIbִI*'DΆ(s^d+*)@f XШHԭLԯ> 6,R bj+Tj K/~ںi{gU ;45 ť@<*v>_iG} h3i:+tuL{69@!_+l @aF

解方程:dy/dx=y/x+tan(y/x)
解方程:dy/dx=y/x+tan(y/x)

解方程:dy/dx=y/x+tan(y/x)
令y/x = u
du = d(y/x) = (xdy-ydx)/x
则dy/dx = (x du/dx + y)/x = xdu/dx + u
代入原式代换
xdu/dx + u = u + tanu
cosudu/sinu = dx/x
积分得
ln|sinu| = ln|x| + C
即sinu = kx,或写作sin(y/x) = kx