lim(x->1) x^(1/(1-x)) lim(x->0) x^(tanx)的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:45:37
xRJ@| dw( CxX("R97Eb=?{Yfv2÷4@9e-{Uc0Mo"CeGZh!2y*YI
%"HN,/&OOGKͧ9
'Pm1*a_[rmڶf/y&P㱫x?C|&4܄A0o鉊U(R6d q6w_aDuEs1qƈ?%W`$J~
q$UwYşdI4\
lim(x->1) x^(1/(1-x)) lim(x->0) x^(tanx)的值
lim(x->1) x^(1/(1-x)) lim(x->0) x^(tanx)的值
lim(x->1) x^(1/(1-x)) lim(x->0) x^(tanx)的值
1.lim(x->1)[x^(1/(1-x))]=?
∵lim(x->1)[lnx/(1-x)]=lim(x->1)[(1/x)/(-1)] (0/0型极限,应用罗比达法则)
=lim(x->1)[(-1)/x]
=-1
∴lim(x->1)[x^(1/(1-x))]=lim(x->1){e^[lnx/(1-x)]}
=e^{lim(x->1)[lnx/(1-x)]}
=e^(-1)
=1/e.
2.lim(x->0)[x^(tanx)]=?
∵lim(x->0)(tanx*lnx)=lim(x->0)[(sinx/x)(1/cosx)(lnx/(1/x))]
=[lim(x->0)(sinx/x)]*[lim(x->0)(1/cosx)]*[lim(x->0)(lnx/(1/x))]
=1*1*[lim(x->0)(lnx/(1/x))] (应用重要极限)
=lim(x->0)(lnx/(1/x))
=lim(x->0)[(1/x/(-1/x²))] (∞/∞型极限,应用罗比达法则)
=lim(x->0)(-x)
=0
∴lim(x->0)[x^(tanx)]=lim(x->0)[e^(tanx*lnx)]
=e^[lim(x->0)(tanx*lnx)]
=e^(0)
=1.
lim(x-3/x+1)^x lim趋向无穷大
lim( x→∞)(1+x / x)^3x
lim(1-5/x)^x
lim(x->1) x^(1/(1-x)) lim(x->0) x^(tanx)的值
lim[(x-1)/(x+1)]^x
lim (e-(1+x)^(1/x))/x
lim(x+e^3x)^1/x
lim(1-x)^(2/x) x->0
lim x趋向1 x-x^x/(1-x+lnx)
lim 2(1+x)^1/x x→0
lim(x趋于0)(ln(1+x)^1/x)
lim(2x-3/2x+1)^x+1
计算lim(x趋于1)(x^x-1)/(xlnx)
lim(x/(1+x^2)),x趋向无穷大
lim(arcsinx/x)(1/x^2)(x趋于0)
lim(arcsinx/x)^(1/x^2)(x趋于0)
lim(x→0) 1-cosx/x+x
lim (n趋向无穷)(x/1+x)x次方