2、求极限 lim┬(x→π/2) ( π/2-x) tanx .

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 04:22:41
2、求极限 lim┬(x→π/2) ( π/2-x) tanx .
x)3zlcӳy/gNP}4eFţI44@nBIb^MR>z lȳ*[< 3*+&a+Հrb@IՃa!'6x~,$} i$Ay{I-DXW= hf (8 hڢI%hE xbY#$ fZ@UZH.( Vheohkd p

2、求极限 lim┬(x→π/2) ( π/2-x) tanx .
2、求极限 lim┬(x→π/2) ( π/2-x) tanx .

2、求极限 lim┬(x→π/2) ( π/2-x) tanx .
lim┬(x→π/2) ( π/2-x) tanx =lim┬(x→π/2) ( π/2-x) sinx/cosx
=lim┬(x→π/2) [( π/2-x)/ sin(π/2-x)]*sinx
=lim┬(x→π/2) [( π/2-x)/ sin(π/2-x)]*lim┬(x→π/2)sinx
=1.
(注释:sin(π/2-x)=cosx)

令t=π/2-x,
x=π/2-t,
则lim┬(t→0)t tan(π/2-t)=lim┬(t→0)t cot(t)=1(重要极限)

0
(π/2-x)*sin(π/2-x)/cos(π/2-x)
0*0/1=0