计算不定积分 ∫arcsin xdx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:00:11
xݓJ@_%Bsl.yv/^jhrػR{DAT҂V]J&'_MviIx?؞In$CHPYEOA?+h`c%)*c>O8=AUF/j &bzǴ"{niʪnJ_l! 0yG@
Η0C(S+dϿu ?XקK
tioy
计算不定积分 ∫arcsin xdx
计算不定积分 ∫arcsin xdx
计算不定积分 ∫arcsin xdx
∫arcsin xdx(分部积分法)
=xarcsinx-积分:xd(arcsinx)
=xarcsinx-积分:x/根号(1-x^2)dx
=xarcsinx+1/2积分:d(1-x^2)/根号(1-x^2)
=xarcsinx+1/2*2根号(1-x^2)+C
=xarcsinx+根号(1-x^2)+C
(C为常数)
这个方法:
令arcsinx=t
则x=sint
dx=dsint
∫arcsin xdx
=∫tdsint
=tsint-∫sintdt
=tsint+∫dcost
=tsint+cost+C,C为积分常数
再将x=sint带回去可得
∫arcsin xdx=xarcsinx+√(1-x^2)+C,C为积分常数
令arcsinx=t
则x=sint
dx=dsint
∫arcsin xdx
=∫tdsint
=tsint-∫sintdt
=tsint+∫dcost
=tsint+cost+C,C为积分常数
再将x=sint带回去可得
∫arcsin xdx=xarcsinx+根号下(1-x^2)再+C,C为积分常数
∫arcsin xdx
=xarcsinx-积分xd(arcsinx)
=xarcsinx-积分:x/根号(1-x^2)dx
=xarcsinx+1/2积分:d(1-x^2)/根号(1-x^2)
=xarcsinx+1/2*2根号(1-x^2)+C
=xarcsinx+根号
计算不定积分 ∫arcsin xdx
∫arcsin^2.xdx求不定积分
不定积分∫arcsin x●arccos xdx
不定积分arcsin根号xdx
计算 arcsin xdx
求不定积分∫1/√x*arcsin√xdx
计算不定积分∫arctan√xdx
计算不定积分∫x^21n xdx
计算不定积分 ∫ sin^5xdx.
计算不定积分∫xsin^2xdx
计算不定积分arctg√xdx
不定积分 :∫ xsin xdx
计算不定积分 ∫√x·sin√xdx
计算不定积分∫sin²xcos²xdx
arc(sinx)^2 与(arcsinx)^2 与arcsin^2x 一样吗?还有这个不定积分∫arcsin^2xdx怎么做 谢谢大家了
∫arcsin√1-xdx=
求不定积分?∫cosx/xdx
求不定积分:∫ln xdx