函数y=(2+sinx)/(3cosx-1)的值域为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 10:27:34
函数y=(2+sinx)/(3cosx-1)的值域为
xJ@_e3dc~@$"ĬC"Yt!,EEj&d>7?,\ssӷWy&,) Ǻ{L%Uz)ǟr>/tr6[ݾɛWE"+P4Z&cx8Ūr,N4vYHp<m@!qDyX/vLfr_d@lGtP bA!-)(KHAOP {I?ὑ0#]fȗH zN͵3r:v{o6i

函数y=(2+sinx)/(3cosx-1)的值域为
函数y=(2+sinx)/(3cosx-1)的值域为

函数y=(2+sinx)/(3cosx-1)的值域为
由y=(2+sinx)/(3cosx-1)可得3ycosx - sinx = y+2,所以
√(1+9y^2)sin(c-x)=y+2,tanc=3y,
所以|y+2|=√(1+9y^2)|sin(c-x)|≤√(1+9y^2),两边平方可得y^2 + 4y+4 ≤1+9y^2,即0≤8y^2 -4y-3,解得y≤(1-√7)/4,或y≥(1+√7)/4.所以函数y的值域为(-∞,(1-√7)/4)∪((1+√7)/4,+∞).

定义域x不等于arccos1/3+2kpi