高数题求微分 设y=2^arctan(1/x)-sin3 ,求dy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 20:17:24
高数题求微分 设y=2^arctan(1/x)-sin3 ,求dy
x){zƳ^.lc}v)X(.($1C{:u3tR*mԩ_`gC F q @u% `5PYu -h]C} C 5eCs kMXXNDCJ%S*l ~sR*mu1\ RQgmI> .MqFuTcP:c8Gj33HQ !:0 $/׳4

高数题求微分 设y=2^arctan(1/x)-sin3 ,求dy
高数题求微分 设y=2^arctan(1/x)-sin3 ,求dy

高数题求微分 设y=2^arctan(1/x)-sin3 ,求dy
y = 2 ^ arccot(x) - sin3
y ' = 2 ^ arccotx * [-1/(1+x²) ] * ln2
dy = 2 ^ arccotx * [-1/(1+x²) ] * ln2 dx

dy=-2^arctan(1/x)ln2 /(x^2+1) dx

dy=-2^arctan(1/x)ln2/(1+x^2)dx

y'=2^arctan(1/x)*ln2*arctan(1/x)'
=2^arctan(1/x)*ln2*1/[1+(1/x)^2]*(1/x)'
=2^arctan(1/x)*ln2*1/[1+(1/x)^2]*(-1/x^2)
=-2^arctan(1/x)*ln2/(1+x^2)