设f''(x)存在,求下列函数的二阶导数d^2y/dx^21.y=f(x) 2.y=ln[f(x)]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 06:17:17
设f''(x)存在,求下列函数的二阶导数d^2y/dx^21.y=f(x) 2.y=ln[f(x)]
x){n_Fӵ3YlcӓO;?mlZy9c{ܔ8J8#CJ4.# #'/ĎI*'@^`"f6E# d&P"qDL7)H8͎FDCl D~Z[ $5Cb4aJ @aP

设f''(x)存在,求下列函数的二阶导数d^2y/dx^21.y=f(x) 2.y=ln[f(x)]
设f''(x)存在,求下列函数的二阶导数d^2y/dx^2
1.y=f(x) 2.y=ln[f(x)]

设f''(x)存在,求下列函数的二阶导数d^2y/dx^21.y=f(x) 2.y=ln[f(x)]
(1)
y=f(x)
d^2y/dx^2
=d(f'(x))/dx
=f''(x)
(2)
y=ln[f(x)]
dy/dx
=f'(x)/f(x)
d^2y/dx^2
=d[f'(x)/f(x)]/dx
=[f''(x)f(x)-f'(x)f'(x)]/f^2(x)
=(f''(x)f(x)-[f'(x)]^2)/f^2(x)