求积分(1+sinx)/[sinx*(1+cosx)]dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 03:02:49
求积分(1+sinx)/[sinx*(1+cosx)]dx
xn0_ +1ǨZ)Btu<bf`@q^ sH:v(e+n}Ȝ~< KJ'?YImeާ|ȶPkDQex(\_@I q Nt)R!51C(5u~iP DvF51\ ]i獶D aQSQ [AS8#t9)B~4 ez;-k~A%mwd 4C=m_i{.iaxc_.C? L

求积分(1+sinx)/[sinx*(1+cosx)]dx
求积分(1+sinx)/[sinx*(1+cosx)]dx

求积分(1+sinx)/[sinx*(1+cosx)]dx
∫{(1+sinx)/[sinx(1+cosx)]}dx
=∫{1/[sinx(1+cosx)]}dx+∫[1/(1+cosx)]dx
=∫{sinx/[(six)^2(1+cosx)]}dx+(1/2)∫{[1/[cos(x/2)]^2}dx
=-∫{1/[(1-cosx)(1+cosx)^2]}d(cosx)+∫{1/[cos(x/2)]^2}d(x/2)
=-(1/2)∫{(1-cosx+1+cosx)/[(1-cosx)(1+cosx)^2]}d(cosx)
 +arctan(x/2)
=-(1/2)∫[1/(1+cosx)^2]d(cosx)
 -(1/2)∫{1/[(1-cosx)(1+cosx)]d(cosx)+arctan(x/2)
=(1/2)[1/(1+cosx)]+arctan(x/2)
 -(1/4)∫{(1-cosx+1+cosx)/[(1-cosx)(1+cosx)]}d(cosx)
=1/(2+2cosx)+arctan(x/2)-(1/4)∫[1/(1+cosx)]d(cosx)
 -(1/4)∫[1/(1-cosx)]d(cosx)
=1/(2+2cosx)+arctan(x/2)-(1/4)ln(1+cosx)+(1/4)ln(1-cosx)+C.