已知向量a=(1+cosx,1+sinx),b=(1,0)c=(1,2)...求证(a-b)垂直(a-c);
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 15:38:58
xN@_e]i۫-Q.&'/HciD%ăJEBE.ȩ3fYYߟiB7kRH=iy*)VQurda[q:tY?TY5AKɧ#p_#XҮLKHX/r@zd(ЈDj:f$S8N9 51B>DBlbкnN$z;$+Dһ8ަÐ=\&;B^ i5yJw@((ǧ+ܼB+)-U0G>b dods'J$P<~GOa"y\TR v{
已知向量a=(1+cosx,1+sinx),b=(1,0)c=(1,2)...求证(a-b)垂直(a-c);
已知向量a=(1+cosx,1+sinx),b=(1,0)c=(1,2)...求证(a-b)垂直(a-c);
已知向量a=(1+cosx,1+sinx),b=(1,0)c=(1,2)...求证(a-b)垂直(a-c);
a-b=(cosx,1+sinx) a-c=(cosx,sinx-1)
所以(a-b)*(a-c)=cos^2(x)+sin^2(x)-1=0
所以(a-b)垂直(a-c)
设X为0 得 a(2,1) a-b=(1, 1) a-c= (1,-1) X1X2+Y1Y2=0
证明两向量垂直通常的方法是看两者的内积是否为零。
向量a-b=(cosx,1+sinx)
向量a-c=(cosx,1-sinx)
(a-b)*(a-c)=0
得证。
垂直 向量点积等于零
a-b=(cosx,1+sinx),a-c=(cosx,sinx-1)
(a-b)点乘(a-c)=cosx的平方+sinx的平方-1=0
所以垂直