证明1/2!+2/3!+3/4!+.+n/(n+1)!=1-1/(n+1)!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 16:16:13
证明1/2!+2/3!+3/4!+.+n/(n+1)!=1-1/(n+1)!
x){ٌ>C}#Em#}cEmc}Em=<}

证明1/2!+2/3!+3/4!+.+n/(n+1)!=1-1/(n+1)!
证明1/2!+2/3!+3/4!+.+n/(n+1)!=1-1/(n+1)!

证明1/2!+2/3!+3/4!+.+n/(n+1)!=1-1/(n+1)!
n/(n+1)!
=[(n+1)-1]/(n+1)!
=(n+1)/(n+1)!-1/(n+1)!
=1/n!-1/(n+1)!
所以左边=1/1!-1/2!+1/2!-1/3!+……+1/n!-1/(n+1)!
=1-1/(n+1)!

n/(n+1)!=1/n!-1/(n+1)!
每个式子这样分解,加起来就行了