1/2!+2/3!+3/4!+.+n/(n+1)!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 04:05:21
xSj@2$$.KqnAH}
}Q7VJP[qS'U~HԠ`0sν3\R$&D&.@#Ǵ"NN
\)Zqqq< vF$#&UbkI#{+I
~[-Xo%;'!u]G9HO l 6֔ gP l(lT 1R&bYeklQamE3Y.Cq}xîQ뿏~3|~ dɃ
֘D {aW/=?>)5ڑ7F<6(ICdq13%<.+!Hϛ7T
|`*
sn^(vWU
uQ9/ba
1/2!+2/3!+3/4!+.+n/(n+1)!
1/2!+2/3!+3/4!+.+n/(n+1)!
1/2!+2/3!+3/4!+.+n/(n+1)!
n/(n+1)!=1/n!-1/(n+1)!
Sn=1-1/(n+1)!
k/(k+1)!=(k+1)/(k+1)!-1/(k+1)!=1/k!-1/(k+1)!
所以原式=1/1-1/2!+1/2!-1/3!+...+1/n!-1/(n+1)!
=1-1/(n+1)!
n/(n+1)! = (n+1-1) / (n+1)! = 1/n! - 1/(n+1)!
原式 = (1/1! - 1/2!) + (1/2! - 1/3!) + (1/3! - 1/4!) + ... + [1/n!-1/(n+1)!]
= 1/1! - 1/(n+1)!
= 1 - 1/(n+1)!能详细点吗?刚学这个。。。。哪里没理解? n/(n+1)! = (n...
全部展开
n/(n+1)! = (n+1-1) / (n+1)! = 1/n! - 1/(n+1)!
原式 = (1/1! - 1/2!) + (1/2! - 1/3!) + (1/3! - 1/4!) + ... + [1/n!-1/(n+1)!]
= 1/1! - 1/(n+1)!
= 1 - 1/(n+1)!
收起
首先通项n/(n+1)!= [(n+1)-1]/(n+1)!=(n+1)//(n+1)!-1/(n+1)!=1/n!-1/(n+1)!
然后
1/2!=1-1/2!
2/3!=1/2!-1/3!
3/4!=1/3!-1/4!
...
再然后,你懂的!