已知tanx,tany是方程x平方+Px+Q=0的两个根求sin(x+y)平方+sinP(x+y)cos(x+y)+Qcos(x+Y)平方的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 18:01:38
已知tanx,tany是方程x平方+Px+Q=0的两个根求sin(x+y)平方+sinP(x+y)cos(x+y)+Qcos(x+Y)平方的值
xUn@~HHȉq>ȕJO\JDjL!!UE R4~xz+0MB`|췳zA>FWם%t>;dV騖qc$4 (a"@*jDFj6PA[6 7kP0NYWj c;7-ͼ!齟I j ߘy/h2 4%CVnܠA.w W:+.1Kf O{X([ uAtȉK^nZ,֑BJGFSIt5錠99LEOҫRʲfVĦB %+8 " \kVVd 19%_&+)G̳cE*|Lj uܗ+ 5#@P<y"K*q_U:p=iw~r5&Ho J

已知tanx,tany是方程x平方+Px+Q=0的两个根求sin(x+y)平方+sinP(x+y)cos(x+y)+Qcos(x+Y)平方的值
已知tanx,tany是方程x平方+Px+Q=0的两个根求sin(x+y)平方+
sinP(x+y)cos(x+y)+Qcos(x+Y)平方的值

已知tanx,tany是方程x平方+Px+Q=0的两个根求sin(x+y)平方+sinP(x+y)cos(x+y)+Qcos(x+Y)平方的值
因为tanx、tany是方程x²+Px+Q=0的两根,则:
tanx+tany=-P
tanxtany=Q
所以,tan(x+y)=[tanx+tany]/[1-tanxtany]=(-P)/(1-Q)
sin²(x+y)+Psin(x+y)cos(x+y)+Qcos²(x+y) 【利用分母1=sin²w+cos²w】
=[sin²(x+y)+Psin(x+y)cos(x+y)+cos²(x+y)]/[sin²(x+y)+cos²(x+y)] 【分子分母同
=[tan²(x+y)+Ptan(x+y)+Q]/[1+tan²(x+y)] 除以cos²(x+y)】
=[P²-P²(1-Q)+Q(1-Q)²]/[P²+(1-Q)²]
=Q

看不懂

tanx和tany是方程的两个根,
则tanx+tany=-P,tanx*tany=Q
将PQ代入所求式子中:
sin(x+y)^2-P*sin(x+y)*cos(x+y)+Q*cos(x+y)^2
=sin(x+y)^2-(tanx+tany)*sin(x+y)*cos(x+y)+tanx*tany*cos(x+y)^2
=[sin(x+y)-tanx*c...

全部展开

tanx和tany是方程的两个根,
则tanx+tany=-P,tanx*tany=Q
将PQ代入所求式子中:
sin(x+y)^2-P*sin(x+y)*cos(x+y)+Q*cos(x+y)^2
=sin(x+y)^2-(tanx+tany)*sin(x+y)*cos(x+y)+tanx*tany*cos(x+y)^2
=[sin(x+y)-tanx*cos(x+y)]*[sin(x+y)-tany*cos(x+y)]
=[sinx*cosy+cosx*siny-(sinx/cosx)*(cosx*cosy-sinx*siny)]*[sinx*cosy+cosx*siny-(siny/cosy)*(cosx*cosy-sinx*siny)]
=(siny/cosx)*(sinx/cosy)=tanx*tany=Q
故所求值为Q

收起

tanx+tany=-p
tanxtany=Q
sin²(x+y)+psin(x+y)cos(x+y)+Qcos²(x+y)
=【sin²(x+y)+psin(x+y)cos(x+y)+Qcos²(x+y)】/[sin²(x+y)+cos²(x+y)]
同除以cos²(x+y)

全部展开

tanx+tany=-p
tanxtany=Q
sin²(x+y)+psin(x+y)cos(x+y)+Qcos²(x+y)
=【sin²(x+y)+psin(x+y)cos(x+y)+Qcos²(x+y)】/[sin²(x+y)+cos²(x+y)]
同除以cos²(x+y)
=【tan²(x+y)+Ptan(x+y)+Q】/[tan²(x+y)+1]
tan²(x+y)+Ptan(x+y)+Q
=tan²(x+y)+tan(x+y)(-tanx-tany)+tanxtany
=tan²(x+y)-tan(x+y)[tan(x+y)(1-tanxtany)+tanxtany
=tan²(x+y)tanxtany+tanxtany
所以,
原式=【tan²(x+y)tanxtany+tanxtany】/[tan²(x+y)+1]
=tanxtany

收起