tanx=4,则1+cos2x+8sin^2x/sin2x?tanx=4,则(1+cos2x+8sin^2 x)/sin2x=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 21:38:40
tanx=4,则1+cos2x+8sin^2x/sin2x?tanx=4,则(1+cos2x+8sin^2 x)/sin2x=?
xON@ůB0:z f:ڪx#.ܲ,<,\yZCDCj{yyy^/eZx4C \YH \jѻ@Ո? h } t w GV#0\c5aV||}m~>]l @YtKюh- LM/^!_ԭ, foqY'H;N8+dmchC9|& 4]>D8X"ݐ*dqH Z+ʐ@" W`90.1f_&JWVYw Er'!<42ġq`{fu}&

tanx=4,则1+cos2x+8sin^2x/sin2x?tanx=4,则(1+cos2x+8sin^2 x)/sin2x=?
tanx=4,则1+cos2x+8sin^2x/sin2x?
tanx=4,则(1+cos2x+8sin^2 x)/sin2x=?

tanx=4,则1+cos2x+8sin^2x/sin2x?tanx=4,则(1+cos2x+8sin^2 x)/sin2x=?
[1+cos2x+8sin²x]/[sin2x]
=[2cos²x+8sin²x]/[2sinxcosx]
上下同除cos²x
=(2+8tan²x)/(2tanx)
=(1+4tan²x)/(tanx)
=(1+4*4²)/4
=65/4