函数f(x)=[(sinx)^2+1/2010(sinx)^2][(cosx)^2+1/2010(cosx)^2]的最小值是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:19:09
函数f(x)=[(sinx)^2+1/2010(sinx)^2][(cosx)^2+1/2010(cosx)^2]的最小值是
xURP~^&4…CË00p!"ő"(P'U_='?G/)vOh<)fi)IK$CBsjRx,7)wӡUݦͬ ٿУw J"jg`(qU$R$Tl ((RE(j\ ]b8-)w`!uZ*~*dޟ3D !]Ád&!dQZuJ dH2#r?)E$[PmC*+seѯoBs=ئ[=oWp{hcXPi:ݚ~L{(Ӯ@c _a];2Toɓ{U 2_ܮ-,7oVS>͑ᘘ%I@kٱ T.> hU˹f}^ʯ]8GUsܓcFm`s:GڭCҘ4QnMyD[+{՗h;+k{fg/Xj6rԽÁqp Wǯޑ2b|B#1IIcXiRp>8V9Bgk֠g!n`n599een<*Q"LfEd 쒌 1B !X?|bjD=_C(k(w1\ԡvO~$QAwv08dz7vD|&nEu5hcI` LoW232K:.=Xu(ւ! ~:;'3݂DcQ$Hȓ8!isPi

函数f(x)=[(sinx)^2+1/2010(sinx)^2][(cosx)^2+1/2010(cosx)^2]的最小值是
函数f(x)=[(sinx)^2+1/2010(sinx)^2][(cosx)^2+1/2010(cosx)^2]的最小值是

函数f(x)=[(sinx)^2+1/2010(sinx)^2][(cosx)^2+1/2010(cosx)^2]的最小值是
设(sinx)^2=a,(cosx)^2=b,
则a+b=1,a≥0,b≥0.
f(x)=[(sinx)^2+1/2010(sinx)^2][(cosx)^2+1/2010(cosx)^2]
=(a+1/(2010a))( b+1/(2010b))
=ab+a/(2010b)+ b/(2010a)+ 1/(2010^2ab)
=ab+(a^2+b^2)/(2010ab) + 1/(2010^2ab)
=ab+((a+b)^2-2ab)/(2010ab) + 1/(2010^2ab)
=ab+(1-2ab)/(2010ab) + 1/(2010^2ab)
=ab+1/(2010ab)-2/2010 + 1/(2010^2ab)
= ab+2011/(2010^2ab)-1/1005
≥2√(ab*2011/(2010^2ab)) -1/1005
=2√2011/2010-1/1005
=(√2011-1)/1005.
ab=2011/(2010^2ab)时取到最小值.

首先化简函数,目标是找到统一的可以用来换元的式子,以便于换元后变成一元函数进行分析最终得到f(x)=(sinxcosx)^2+2011/((2010)^2*(sinxcosx)^2)-4020,将中括号的式子化成分式相乘后就能得到这个式子。
第二步:换元,令t=(sinxcosx)^2;那么f(t)=t+2011/(2010^2*t)-4020;我们要求出t的取值范围,这个不难;t=(si...

全部展开

首先化简函数,目标是找到统一的可以用来换元的式子,以便于换元后变成一元函数进行分析最终得到f(x)=(sinxcosx)^2+2011/((2010)^2*(sinxcosx)^2)-4020,将中括号的式子化成分式相乘后就能得到这个式子。
第二步:换元,令t=(sinxcosx)^2;那么f(t)=t+2011/(2010^2*t)-4020;我们要求出t的取值范围,这个不难;t=(sinx)^2*(1-(sinx)^2)=(sinx)^2-(sinx)^4=-((sinx)^2-0.5)^2+0.25求这个式子的最大与最小值应该很简单,最终结果是0=第三步:求最小值;对f(t)进行求导得到:df(t)=1-2011/9(2010t)^2),令其为0,得到,t0=sqrt(2011)/2010约等于0.0223;当去其左右值,分别得到的结果是左负右正,说明这是个极小值点,而在t属于[0,0.25]区间里极小值就是它的最小值,所以带入这个值得到最小值为f(x)min=f(t)min=f(t0)= -4.0200e+003

收起