函数f(x)=[(sinx)^2+1/2010(sinx)^2][(cosx)^2+1/2010(cosx)^2]的最小值是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:19:09
函数f(x)=[(sinx)^2+1/2010(sinx)^2][(cosx)^2+1/2010(cosx)^2]的最小值是
函数f(x)=[(sinx)^2+1/2010(sinx)^2][(cosx)^2+1/2010(cosx)^2]的最小值是
函数f(x)=[(sinx)^2+1/2010(sinx)^2][(cosx)^2+1/2010(cosx)^2]的最小值是
设(sinx)^2=a,(cosx)^2=b,
则a+b=1,a≥0,b≥0.
f(x)=[(sinx)^2+1/2010(sinx)^2][(cosx)^2+1/2010(cosx)^2]
=(a+1/(2010a))( b+1/(2010b))
=ab+a/(2010b)+ b/(2010a)+ 1/(2010^2ab)
=ab+(a^2+b^2)/(2010ab) + 1/(2010^2ab)
=ab+((a+b)^2-2ab)/(2010ab) + 1/(2010^2ab)
=ab+(1-2ab)/(2010ab) + 1/(2010^2ab)
=ab+1/(2010ab)-2/2010 + 1/(2010^2ab)
= ab+2011/(2010^2ab)-1/1005
≥2√(ab*2011/(2010^2ab)) -1/1005
=2√2011/2010-1/1005
=(√2011-1)/1005.
ab=2011/(2010^2ab)时取到最小值.
首先化简函数,目标是找到统一的可以用来换元的式子,以便于换元后变成一元函数进行分析最终得到f(x)=(sinxcosx)^2+2011/((2010)^2*(sinxcosx)^2)-4020,将中括号的式子化成分式相乘后就能得到这个式子。
第二步:换元,令t=(sinxcosx)^2;那么f(t)=t+2011/(2010^2*t)-4020;我们要求出t的取值范围,这个不难;t=(si...
全部展开
首先化简函数,目标是找到统一的可以用来换元的式子,以便于换元后变成一元函数进行分析最终得到f(x)=(sinxcosx)^2+2011/((2010)^2*(sinxcosx)^2)-4020,将中括号的式子化成分式相乘后就能得到这个式子。
第二步:换元,令t=(sinxcosx)^2;那么f(t)=t+2011/(2010^2*t)-4020;我们要求出t的取值范围,这个不难;t=(sinx)^2*(1-(sinx)^2)=(sinx)^2-(sinx)^4=-((sinx)^2-0.5)^2+0.25求这个式子的最大与最小值应该很简单,最终结果是0=
收起