一道高数题(函数极限)f(x)在(a,正无穷)可导,若x趋向正无穷时f(x)及其导数都存在,证明当x趋向正无穷时f(x)的导数等于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 12:29:15
一道高数题(函数极限)f(x)在(a,正无穷)可导,若x趋向正无穷时f(x)及其导数都存在,证明当x趋向正无穷时f(x)的导数等于0
x){e䗫g<t

一道高数题(函数极限)f(x)在(a,正无穷)可导,若x趋向正无穷时f(x)及其导数都存在,证明当x趋向正无穷时f(x)的导数等于0
一道高数题(函数极限)
f(x)在(a,正无穷)可导,若x趋向正无穷时f(x)及其导数都存在,证明当x趋向正无穷时f(x)的导数等于0

一道高数题(函数极限)f(x)在(a,正无穷)可导,若x趋向正无穷时f(x)及其导数都存在,证明当x趋向正无穷时f(x)的导数等于0
假设lim(x→+∞)f'(x)≠0,不妨设lim(x→+∞)f'(x)=k'>0
则存在M>0,当x>M时,f'(x)>=k'/2=k>0
取x0>M,再任取x>x0,则f(x)=f(x0)+f'(c)(x-x0) (x0