定义域为R的奇函数f(x)=f(x-2k) (k属于Z) 当x属于(0,1)时 f(x)=2^x/(4^x+1) 求f(x)在[-1,1]上的解析式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:23:24
定义域为R的奇函数f(x)=f(x-2k) (k属于Z) 当x属于(0,1)时 f(x)=2^x/(4^x+1) 求f(x)在[-1,1]上的解析式
x){n֓OcWY-O?ml4 M[ kt'4\ac~Oʍ*5L* 5ml="ZP0Ɏ.//~6o=6IEg~]F 1(DƜ

定义域为R的奇函数f(x)=f(x-2k) (k属于Z) 当x属于(0,1)时 f(x)=2^x/(4^x+1) 求f(x)在[-1,1]上的解析式
定义域为R的奇函数f(x)=f(x-2k) (k属于Z) 当x属于(0,1)时 f(x)=2^x/(4^x+1) 求f(x)在[-1,1]上的解析式

定义域为R的奇函数f(x)=f(x-2k) (k属于Z) 当x属于(0,1)时 f(x)=2^x/(4^x+1) 求f(x)在[-1,1]上的解析式
-1