M(√3,0),椭圆x^2/4+y^2=1与直线y=k(x+√3)交于点A,B,则△ABM的周长为A.4 B.6 C.2√2 D.4√2

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/28 09:46:52
M(√3,0),椭圆x^2/4+y^2=1与直线y=k(x+√3)交于点A,B,则△ABM的周长为A.4 B.6 C.2√2 D.4√2
xTnW#K@3˙a"!_"|@c\5M_r-8ivV@",0R'ΜxgĖ<{/kda*=U 諥3XT3nk=;$QvmOli~u>;lVT4tMPuA ޤuO5U,L%QB?nnA2=xtViJXU*-3"#d}`L1uR& B|3]oi_wEU8Q38:NbYc}6VQD¼Q$>x2·UD$uI,2mw΂nָ: 'kZ$4שׂޫ~[&-uyFmxUmp@xqN֫2#6DtjI?VD{0j<^u@3}J1-s4rX)69l$zR,;SOWa?wݺ怿 p~J0=9ap!Z~O_SP濩Ot]z~yנ-I8@rk>_ =j|q4V$856o?Oemńxy`§|!Or*@XN!Tz8bm^@ě$ ǻBfH&rO=Ld WEBv~a(XfI_9ǜ^Qkt_%I,n!w41z"fjJHq'#c%6k뢅Lֱ#t۶f31G7%5.'ݲ%+1UְpP2¢, Ve<+2qeVұc Ŋglˉ;%Ώ?Q:

M(√3,0),椭圆x^2/4+y^2=1与直线y=k(x+√3)交于点A,B,则△ABM的周长为A.4 B.6 C.2√2 D.4√2
M(√3,0),椭圆x^2/4+y^2=1与直线y=k(x+√3)交于点A,B,则△ABM的周长为
A.4 B.6 C.2√2 D.4√2

M(√3,0),椭圆x^2/4+y^2=1与直线y=k(x+√3)交于点A,B,则△ABM的周长为A.4 B.6 C.2√2 D.4√2
我觉得4个选项都不对,△ABM的周长为8.
椭圆: x^2/4+y^2=1
a^2 = 4 , b^2=1
c^2=a^2 - b^2=4-1=3
c=±√3
∴M为椭圆右焦点F2
椭圆x^2/4+y^2=1与直线y=k(x+√3)交于点A,B
x^2 + (4k^2)(x+√3)^2 = 4
整理后: (1+4k^2)x^2 + (8√3k^2)x + 12k^2 - 4 =0
△=b^2 - 4ac = (8√3k^2)^2 - 4×(1+4k^2)×(12k^2 - 4) = 16k^2+16 =16(k^2+1)>0
由此可得:无论k取何值,直线与椭圆总有两个交点且直线一定过点(-√3 , 0),即椭圆的左焦点F1
因此,根据椭圆的定义:
△ABM的周长=AM+AB+BM=(AF1+AF2)+(BF1+BF2)=2a+2a=4a=8

M为椭圆右焦点,由题目知,K为不等于0的任意值都得到△ABM,不妨设A、B为短轴端点,则易知△ABM的周长为6

根据椭圆的定义,椭圆上任意点到两个焦点的距离和都等于定值,即2a,该题中a=2(比照椭圆的标准方程),直线y必过(-√3,0)点,m点(√3,0),这两个点刚好是焦点。

因此:△ABM=(AP+AM)+(BP+BM)=2a+2a=8