已知x>0,求y=3-x-5/x的最大值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:21:54
已知x>0,求y=3-x-5/x的最大值
xRn@H*dSPTJАMTUNhidbv崿lMb}3 _ф|geRWHC_ו* SwF= s@ ;G/9GD'5ꊯi"0dR"w&kW&-rc%Zg@ⓡyo M>B^4 [n2tv-k}GLEU-m< G筺m1-*ӋvOt GXJb\

已知x>0,求y=3-x-5/x的最大值
已知x>0,求y=3-x-5/x的最大值

已知x>0,求y=3-x-5/x的最大值
∵x>0
∴x+5/x≥2×√﹙x·5/x﹚=2√5
﹣﹙x+5/x﹚≤﹣2√5
3-﹙x+5/x﹚≤3-2√5
即:y≤3-2√5
∴ y的最大值是﹙3-2√5﹚.

y=3-x-5/x=3-(x+5/x)
由于x>0,故有x+5/x>=2根号5
故有y<=3-2根号5
即有最大值是:3-2根号5.

可以用求导法做

y=3-(x+5/x)小于等于3-2倍根号下(5x/x)小于等于3-2根号5仅x=根号5时候成立

y’=-1+5/x^2
令y'=0,因为x>0,所以有x=√5
函数先增后减,在x=√5有最大值,最大值为:3-2√5

会求导吗? 会求导的话 直接一阶求导就行了 取根号5就就行了

x>0,y=3-(x+5/x)<=3-2根号下(x·5/x)=3-2根号5
也就是最大值。此时,x=根号5

3-2√5
由y=3-x-5/x
可得y=3-(x+5/x)
x+5/x>=2√(x*5/x)
>=2√5
故y=3-x-5/x<=3-2√5