∫ xe^x/(1+x)^2 dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:59:54
∫ xe^x/(1+x)^2 dx
xJ0_ )eMS7uEJŵ ]z9Di[]պ&D ĭfc.㠡}Ɲ]/RK4V?QO9aǪꪞ{VͱmBnuy<̒קlOnzmRhQ 2ڹE{ެ 2*%R"X DDb <ϝ R 0mܾX*kG"0E)N#O2l L$ސo( dQgbt#Ve"K 67+虎-u(HazᆪEWv*'q3!r#0 1CdH((Q:zbn]?oh

∫ xe^x/(1+x)^2 dx
∫ xe^x/(1+x)^2 dx

∫ xe^x/(1+x)^2 dx
http://hi.baidu.com/522597089/album/item/00c0dc304b2ba6a11b4cff09.html#

可尝试用分部积分法

∫ [x e^x /(x + 1)²] dx
=∫ (x e^x) (x + 1)^(-2) dx
=x e^x = u → [(1)e^x + x e^x] dx = du → (e^x + x e^x) dx = du → e^x (1 + x) dx = du
(x + 1)^(-2) dx = dv → (x + 1)^(-2) d(x + 1) =...

全部展开

∫ [x e^x /(x + 1)²] dx
=∫ (x e^x) (x + 1)^(-2) dx
=x e^x = u → [(1)e^x + x e^x] dx = du → (e^x + x e^x) dx = du → e^x (1 + x) dx = du
(x + 1)^(-2) dx = dv → (x + 1)^(-2) d(x + 1) = dv → [(x + 1)^(-2+1)] /(-2+1) = v → [(x + 1)^(-1)] /(-1) = v → [- 1 /(x + 1)] = v
∫ u dv = v u - ∫ v du → ∫ (x e^x) (x + 1)^(-2) dx = [- 1 /(x + 1)] x e^x - ∫ [- 1 /(x + 1)] e^x (1 + x) dx
∫ (x e^x) (x + 1)^(-2) dx = [- x e^x /(x + 1)] + ∫ e^x dx
=[- x e^x /(x + 1)] + e^x + c
= e^x {[- x /(x + 1)] + 1} + c
=e^x [(- x + x + 1)/(x + 1)] + c
e^x [1 /(x + 1)] + c
∫ [x e^x /(x + 1)²] dx = [e^x /(x + 1)] + c

收起