线性代数有关矩阵的一个问题设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:58:49
x͒N@_ŵi@Iچ}{CHݸ,R"b@H@DL")-?řieWsnwN&MzΆ#hvʤ0zl~ ZӠZJ2LN˒]yEU2Av4X{ElWs{.qxxQJiߒ& Cd[Ƒ)E ۦ_X?vG`ckz&@vuQ$Y--iHWL#klX4@9Я@M%s8P Y^VjaʧnޔZl6ʌz.xQR/h#*G3r`ve8pҡZ
˟zN!EPttu/*ޤQ06QpǪFD<{ICx
线性代数有关矩阵的一个问题设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC
线性代数有关矩阵的一个问题
设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC
线性代数有关矩阵的一个问题设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC
B的阶数是应该是mxr,否则BC不能乘,
这个题是一个构造题,
对于任意的m×n矩阵A都可以化成标准矩阵型
即存在m阶可逆阵P和n阶可逆阵Q使得A=PVQ,
其中V=Er 0
0 0
Er是r阶单位矩阵,那么V的秩为r
令B为PV,显然B的阶数为mxr,C为VQ,显然C的阶数为r×n
由于P、Q均为可逆矩阵,所以B、C的秩等于V的秩r
那么BC=PV*VQ=PVQ=A