求(tanx-sinx)/(sinx)^3的极限,我是这么算的,先把分式拆开,求两个极限之差,然后用等价无穷小,得到lim(1-x^2)-lim(1-x^2)结果是0可正确答案是0,我想知道为什么我这种做法错了正确答案是0.5.打错啦

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 08:26:09
求(tanx-sinx)/(sinx)^3的极限,我是这么算的,先把分式拆开,求两个极限之差,然后用等价无穷小,得到lim(1-x^2)-lim(1-x^2)结果是0可正确答案是0,我想知道为什么我这种做法错了正确答案是0.5.打错啦
xUnIfgb,g1hl/K]cH!gF'OhaqGzy/o[~o4p{^֐G|2]SM-ӼWVTca3>gIJgVҮD#g7_^]%"jELLO\sX Pȑ3$DQ-|>,!jyg  N!׸yZK>JdlfʵH NYPH|@6Zڨ+k" q[VwQi~ip eqEE;"E:)2LB~<";_^ 6@KUr6A 7~עP>T`j⁖ǩ]S+ɕ[}(k ru dCNX%# PI!Geg+ }Og_X[wmݩчd!/L?V~5jdUEp_(% ewvn!C kJz3T D̹U)M [TK)RP><؏C-?] لX} ح˶֞~fDN1QiuY6d!lKzێ/*JK-#l!EC f1$$܄Fl(acju/9(8/E`-rbB MUҪ s4k^! ؍Y5YJT2+>7G?NE@4+w]/} wC=(5߃RgB>f"ʕ)F3+0`ڴXv9Ǻ?9|R tMG\.*uWbe%

求(tanx-sinx)/(sinx)^3的极限,我是这么算的,先把分式拆开,求两个极限之差,然后用等价无穷小,得到lim(1-x^2)-lim(1-x^2)结果是0可正确答案是0,我想知道为什么我这种做法错了正确答案是0.5.打错啦
求(tanx-sinx)/(sinx)^3的极限,我是这么算的,先把分式拆开,求两个极限之差,然后用等价无穷小,得到lim(1-x^2)-lim(1-x^2)结果是0可正确答案是0,我想知道为什么我这种做法错了
正确答案是0.5.打错啦

求(tanx-sinx)/(sinx)^3的极限,我是这么算的,先把分式拆开,求两个极限之差,然后用等价无穷小,得到lim(1-x^2)-lim(1-x^2)结果是0可正确答案是0,我想知道为什么我这种做法错了正确答案是0.5.打错啦
1.原则上说是可以分开之后展开,再对每个分式使用无穷小的
但是这需要你分开的两个式子的极限相减有意义才行
此处不然
其次看着你的等价无穷小有错
tanx~x
sinx~x
注意分母是(sinx)^3~x^3
因为
tanx/(sinx)^3 x/x^3=1/x^2极限是正无穷
sinx/(sinx)^3 x/x^3=1/x^2极限是正无穷
正无穷-正无穷是不定型
2.如果直接taylor展开到一定阶数也是可以的(一般不用)
但是由于分母的阶是x^3
你分子必须至少展开到x^3,才能保证不犯错.
3.正确做法:
tanx=sinx/cosx
原式上下同乘cosx
=(sinx-sinxcosx)/[(sinx)^3 cosx]
同除sinx (因为取极限,x≠0,只是趋向于0)
=(1-cosx)/[(sinx)^2 cosx]
此时再用等价无穷小
1-cosx~x^2/2
sinx~x
cosx~1
=(x^2/2)/[x^2*1]
=1/2
所以先尽可能化简,然后再等价无穷小,注意只有乘除可以用等价无穷小.

无穷小不能直接减无穷小
此题如果用等价无穷小,可以这么做:
tanx=x+x^3/3+...
sinx=x-x^3/3!+
tanx-sinx=(1/3+1/6)x^3=1/2*x^3
(sinx)^3= x^3
这样两者相除,即得1/2.

先拆开的话变为了无穷减无穷型,显然不行。
这个题有很多方法,一是将tanx写为sinx/cosx来算,通分即可。而是将tanx在0处做泰勒展示,tanx==x+x^3/3+2x^5/15+.....,sinx也做泰勒展示。

你错在两个无穷大的差不一定是“0”,比如n和n^2
正确做法,(tanx-sinx)/(sinx)^3=sinx(1-cosx)/(sinx)^3cosx=(1-cosx)/(sinx)^2cosx
=1/2x^2/x^2=1/2

(tanx-sinx)/(sinx)^3=sinx(1-cosx)/(sinx)^3cosx=(1-cosx)/(sinx)^2cosx
=1/2x^2/x^2=1/2

用 tanx-sinx=sinx(1-cosx)/cosx 然后再用等价无穷小 可追问