y=sin[sin(x^2)] 则dy/dx=?求详解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 23:31:29
y=sin[sin(x^2)] 则dy/dx=?求详解
x)-̋b8#X3S*S*lmlz~ًmK#o,XON~/~=BRUTFZHfk)`X)fte+t`y6yvPGۀ9Nx_bx M0&X+CNl/BQNHQE

y=sin[sin(x^2)] 则dy/dx=?求详解
y=sin[sin(x^2)] 则dy/dx=?
求详解

y=sin[sin(x^2)] 则dy/dx=?求详解
dy/dx相当于对x进行求导:
dy/dx = y' = 2x*cos[sin(x^2)] * cos(x^2)
由于:sinx = cosx,sin(x^2) = 2x*cos(x^2)

y=sin[sin(x^2)]
y' = cos[sin(x^2)] d/dx(sin(x^2))
= cos[sin(x^2)] . cos(x^2) .d/dx(x^2)
= 2x. cos[sin(x^2)] . cos(x^2)