∫( e^x sin y- y )dx + (e^x cos y - 1)dy,是(2,0)的半圆周y=√2x-x^2麻烦您了

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 17:03:51
∫( e^x sin y- y )dx + (e^x cos y - 1)dy,是(2,0)的半圆周y=√2x-x^2麻烦您了
x){ԱԸ 霶WT>eT[gr˞5x&HDDΆxڱy6o5O3QǺ JMځȐ@䢑ROT}ٴ/4Xl^ˆO74MwC gcsۓ}Fϗڱb}frŋ[&@L2"$[@WMX1Иpyc׋KГ]5QAMԅ1 a ` M qFF@ZF 1

∫( e^x sin y- y )dx + (e^x cos y - 1)dy,是(2,0)的半圆周y=√2x-x^2麻烦您了
∫( e^x sin y- y )dx + (e^x cos y - 1)dy,是(2,0)的半圆周y=√2x-x^2
麻烦您了

∫( e^x sin y- y )dx + (e^x cos y - 1)dy,是(2,0)的半圆周y=√2x-x^2麻烦您了
利用格林公式:∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy
首先需要构造封闭曲线.
∫(x沿半圆周y=√2x-x^2从2积到0)( e^x sin y- y )dx + (e^x cos y - 1)dy+
∫(x沿x轴从0积到2)( e^x sin y- y )dx + (e^x cos y - 1)dy=
∫(x沿半圆周y=√2x-x^2从2积到0)( e^x sin y- y )dx + (e^x cos y - 1)dy+
∫( e^x sin 0- 0)dx + (e^x cos 0- 1)d0=
∫(x沿半圆周y=√2x-x^2从2积到0)( e^x sin y- y )dx + (e^x cos y - 1)dy=
=∫∫D(pQ/px-pP/py)dxdy (D为该圆的上半圆)
=∫∫D(e^x cosy-e^x cosy+1)dxdy=∫∫D dxdy=S(D)=π1^2/2=π/2