计算曲线积分∫(3y-x^2)dx+(7x+√(y^4+1)dy,其中L为半圆y=√(9-x^2)从点A(3,0)到点B(-3,0)的一段弧rt
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 10:25:10
xSJ@LL$b"M((]KQɮ-A|#FXj|5O?LҮXL3;lFEVt~MRǩabKlRY",㔱=U!gi1_AI7q0xh1WjKlׂz!l/b͍_gmz6 %{zR>AwvV+!BA$JϽMZt[;Ex'.-^R+w
#b# Y#1UH@9PDHD@
kMiMK˃im0!рDF*'al` Pۅ Loc' O.+@BL=>57A/:2XŐsY^
计算曲线积分∫(3y-x^2)dx+(7x+√(y^4+1)dy,其中L为半圆y=√(9-x^2)从点A(3,0)到点B(-3,0)的一段弧rt
计算曲线积分∫(3y-x^2)dx+(7x+√(y^4+1)dy,其中L为半圆y=√(9-x^2)从点A(3,0)到点B(-3,0)的一段弧
rt
计算曲线积分∫(3y-x^2)dx+(7x+√(y^4+1)dy,其中L为半圆y=√(9-x^2)从点A(3,0)到点B(-3,0)的一段弧rt
补线L1:y = 0.dy = 0.逆时针方向,x由- 3变到3.封闭区域运用格林公式
∮(L+L1) ( 3y - x² ) dx + ( 7x + √(y⁴ + 1) ) dy
= ∫∫D [ ∂/∂x ( 7x + √(y⁴ + 1) ) - ∂/∂y ( 3y - x² ) ] dxdy
= ∫∫D [ 7 - 3 ] dxdy
= 4∫∫D dxdy
= 4 * 1/2 * π * 3²
= 18π
∫L1 ( 3y - x² ) dx + ( 7x + √(y⁴ + 1) ) dy
= ∫(- 3,3) ( - x² ) dx
= - 2 * x³/3:(0,3)
= - 2 * 27/3
= - 18
即∫L + ∫L1 = ∮(L+L1) = 18π
∫L - 18π = 18π
得∫L ( 3y - x² ) dx + ( 7x + √(y⁴ + 1) ) dy = 18(π + 1)
证明曲线积分∫(xy^2-y^3)dx+(x^2y-3xy^2)dy与路径无关,并计算积分
计算曲线积分∮(x^3+xy)dx+(x^2+y^2)dy其中L是区域0
证明曲线积分与路径无关:∫(x+y)dx+(x-y)dy {积分上限(2,3),下线(1,1)} 在整个xoy证明曲线积分与路径无关:∫(x+y)dx+(x-y)dy {积分上限(2,3),下线(1,1)} 在整个xoy面内与路径无关,计算分值
计算坐标曲线积分 ∫(3x^2y+αx^2y)dx+(x^3-4x^2y)dy,求α若对坐标曲线积分 ∫(3x^2y+αx^2y)dx+(x^3-4x^2y)dy,与路径无关,其中L⊂ R^2,求α=
计算曲线积分∫(3y-x^2)dx+(7x+√(y^4+1)dy,其中L为半圆y=√(9-x^2)从点A(3,0)到点B(-3,0)的一段弧rt
用格林公式计算第二型曲线积分(X^2-Y)dx+(Y^2+3X)dy.L:绝对值X+绝对值Y=1
计算曲线积分∫L(e^(x^2)sinx+3y-cosy)dx+(xsiny-y^4)dy ,其中L是从点(-π,0)沿曲线y=sinx到点(π,0)的弧段
计算曲线积分I=∫(e^y+x)dx+(xe^y-2y)dy,L为从(0,0)到(1,2)的圆弧
证明曲线积分∫(2,1)—(1,0)(2x-y^2+1)dx+(1-x^2y)dy与路径无关的计算
计算曲线积分∫L(2xy+3sinx)dx+(x2-ey)dy,其中L为摆线 x=t-sint Y=1-cost 从点O(0,0)到A(π,2)的一段计算曲线积分∫L(2xy+3sinx)dx+(x2-ey)dy,其中L为摆线 x=t-sint Y
计算曲线积分∫L(3xy+sinx)dx+(x2-yey)dy,其中L是曲线y=x2-2x上以O(0,0)为起点,A(4,8)为终点弧段
计算积分. ∫2^(3x)*3^(2x)dx
计算积分∫(x^3-y)dx-(x+siny)dy,其中L是曲线y=x^2上从点(0,0)到点(1,1)之间的一段有向弧.
计算积分∫sinx*x^2 dx
计算积分 ∫ x^2 arctan4x dx
计算曲线积分:∫(x-1)/((x-1)^2+y^2)dy -y/((x-1)^2+y^2)dx,L为包含点A(0,1)的简单闭曲线,逆时针.
设设C是点A(1,1)到点B(2,3)的直线段,计算对坐标的曲线积分∫C(x-y)dx+(x+y)dy
对坐标的曲线积分问题计算∫(L) (x+y)dy+(x-y)dx / x^2+y^2-2x+2y ,其中L为圆周(x-1)^2 + (y+1)^2 =4正向