已知X>=1,y>=1,证明x+y+1/xy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 08:28:17
已知X>=1,y>=1,证明x+y+1/xy
xRJ@L:Nu#HNBՅXkEbR>VLtBs眓sg}bC0{94)&<}/W  F1/" B$"U0R!"paL`#G*w{F-2#s`p23)}\ZWrPD 5`,<R e4'aI'iX@J;t~fULᠺ.Mzo;n7iEra:M/6d u>q'yc*u-G2 "0tklю` F#Q

已知X>=1,y>=1,证明x+y+1/xy
已知X>=1,y>=1,证明x+y+1/xy

已知X>=1,y>=1,证明x+y+1/xy
1/x+1/y+xy -( x+y+1/xy)
=1/X - x +1/Y -y +XY -1/xy
=1/xy(y-xxy+x-xyy+xxyy-1)
=1/xy (y+x -xy(y+x) + (xy)^2 -1)
=1/xy ((y+x)(1-xy)+(xy-1)(xy+1))
=1/xy ((xy-1)( xy +1 - y - x))
=(xy-1)/xy *( (x-1)(y-1))
=1/xy * (x-1)(y-1)(xy-1)
x≥1 y≥1 xy≥1
所以上式≥0
所以 右边≥左边 即
x+y+1/xy

呵呵,这题目有问题,你看后面有两个/

1/x+1/y+xy-(x+y+1/xy)=(xy-1)(x-1)(y-1)/xy
X>=1,y>=1
所以xy-1≧0,x-1≧0,y-1≧0,xy≧1
故(xy-1)(x-1)(y-1)/xy≧0
1/x+1/y+xy-(x+y+1/xy)≧0
x+y+1/xy<=1/x+1/y+xy