(1/2+1/3+...+1/2008)(1+1/2+1/3+...1/2007)与(1+1/2+1/3+...+1/2008)(1/2+1/3+...+1/2007)的大小

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 20:24:40
(1/2+1/3+...+1/2008)(1+1/2+1/3+...1/2007)与(1+1/2+1/3+...+1/2008)(1/2+1/3+...+1/2007)的大小
xUKN@֦j.IoQ6&)bB|FE%&Fԑhg(^-"D|r07Q$ iBb/<PNN!'Prz)[{˸|o42_RFI63繬_E>#]vu^g뾌Nx#3PEB|JQ$g8g_NSFBFS&a(,Xqx3H~}HɃk܎ Eb=_fl]8bcru֎u%Z ٬9/(읇@1+vo7127x  ڿ}}&.adʩEJҡ̌,JIN Cq1Cmy)_DDGqjs-ZzC6 d:\퓝~;U5͐MX|:U`:S䡂rUEk&]|)? ZZ:N)Lf-j K/G_ɾ

(1/2+1/3+...+1/2008)(1+1/2+1/3+...1/2007)与(1+1/2+1/3+...+1/2008)(1/2+1/3+...+1/2007)的大小
(1/2+1/3+...+1/2008)(1+1/2+1/3+...1/2007)与(1+1/2+1/3+...+1/2008)(1/2+1/3+...+1/2007)的大小

(1/2+1/3+...+1/2008)(1+1/2+1/3+...1/2007)与(1+1/2+1/3+...+1/2008)(1/2+1/3+...+1/2007)的大小
令a=1/2+1/3+...+1/2007
则(1/2+1/3+...+1/2008)(1+1/2+1/3+...1/2007)-(1+1/2+1/3+...+1/2008)(1/2+1/3+...+1/2007)
=(a+1/2008)(1+a)-(1+a+1/2008)*a
=a(a+1)+(a+1)/2008-a(a+1)-a/2008
=(a+1)/2008-a/2008
=(a+1-a)/2008
=1/2008>0
所以(1/2+1/3+...+1/2008)(1+1/2+1/3+...1/2007)>(1+1/2+1/3+...+1/2008)(1/2+1/3+...+1/2007)

(1/2+1/3+...+1/2008)(1+1/2+1/3+...1/2007)>(1+1/2+1/3+...+1/2008)>(1/2+1/3+...+1/2007)

前者大。拆项抵消可得

比较(1/2+1/3+...+1/2008)(1+1/2+1/3+...1/2007)与(1+1/2+1/3+...+1/2008)(1/2+1/3+...+1/2007)的大小
只要判断(1/2+1/3+...+1/2008)(1+1/2+1/3+...1/2007)-(1+1/2+1/3+...+1/2008)(1/2+1/3+...+1/2007)值的正负即可。
用整体思想:...

全部展开

比较(1/2+1/3+...+1/2008)(1+1/2+1/3+...1/2007)与(1+1/2+1/3+...+1/2008)(1/2+1/3+...+1/2007)的大小
只要判断(1/2+1/3+...+1/2008)(1+1/2+1/3+...1/2007)-(1+1/2+1/3+...+1/2008)(1/2+1/3+...+1/2007)值的正负即可。
用整体思想:

令A=1/2+1/3+...+1/2008
原式
=A(A+1-1/2008)-(A+1)(A-1/2008)
=A^2+A-A/2005-(A^2-A/2005+A-1/2005)
=1/2008>0为正值
(1/2+1/3+...+1/2008)(1+1/2+1/3+...1/2007)比1+1/2+1/3+...+1/2008)(1/2+1/3+...+1/2007)大

收起

设(1/2+1/3+...+1/2007)为X,1/2008为Y
则题目可以简化为比较(X+Y)(1+X)与
(1+X+Y)X的大小.作差得:
(X+Y)(1+X)-(1+X+Y)X
=X+X^2+Y+XY-X-X^2-XY
=Y=1/2008>0
∴(1/2+1/3+...+1/2008)(1+1/2+1/3+...1/2007)>(1+1/2+...

全部展开

设(1/2+1/3+...+1/2007)为X,1/2008为Y
则题目可以简化为比较(X+Y)(1+X)与
(1+X+Y)X的大小.作差得:
(X+Y)(1+X)-(1+X+Y)X
=X+X^2+Y+XY-X-X^2-XY
=Y=1/2008>0
∴(1/2+1/3+...+1/2008)(1+1/2+1/3+...1/2007)>(1+1/2+1/3+...+1/2008)(1/2+1/3+...+1/2007)

收起