已知a b c是三角形abc的三边长,a^2+ab-ac-bc=0,且b^2+bc-ba-ca=0如题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:29:20
已知a b c是三角形abc的三边长,a^2+ab-ac-bc=0,且b^2+bc-ba-ca=0如题
xQAN0Jq48OAZ"@@ՈVQR !iK 5= -#H>̮gw"Ϗz =ӯC` l:Y^IC`q%{ )DhLJa?c{_u{m"ՍXRMGYV3لcX(t$!MGZb!(1wBMr=p (/a} kz-i~h29l*UDW:&N>Xdac)@ FmLun})g`xd~ x8M

已知a b c是三角形abc的三边长,a^2+ab-ac-bc=0,且b^2+bc-ba-ca=0如题
已知a b c是三角形abc的三边长,a^2+ab-ac-bc=0,且b^2+bc-ba-ca=0
如题

已知a b c是三角形abc的三边长,a^2+ab-ac-bc=0,且b^2+bc-ba-ca=0如题
因为a^2+ab-ac-bc=0
所以(a^2+ab)-(ac+bc)=0
a(a+b)-c(a+b)=0
(a-c)(a+b)=0,a+b不等于0
所以a-c=0
即a=c…………(1)
由b^2+bc-ba-ca=0
得(b^2+bc)-(ba+ca)=0
与上同理,得:
(b+c)(b-a)=0
得b=a…………(2)
结合1、2,三角形是等边三角形