在三角形ABC中,AC=2,BC=1,COS C =3/4; 问题(1)求AB的值.(2)求sin(2A+C)的值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:40:22
在三角形ABC中,AC=2,BC=1,COS C =3/4; 问题(1)求AB的值.(2)求sin(2A+C)的值.
xR=N0J%$&)&E#9>'&%c5b)D BnEM9 S: <;xxͦ˭dz8%)A0Y긑OΙ/D?ZJ#(':a&ost'|Ysv,{uE,xqsZN2^LOqi4=˱%%-$!!+% Gl69[\?JfRu6  Q"Jnhn߫\|)ũە٠*,S))Ji`Yq9#V}o@r?{|,

在三角形ABC中,AC=2,BC=1,COS C =3/4; 问题(1)求AB的值.(2)求sin(2A+C)的值.
在三角形ABC中,AC=2,BC=1,COS C =3/4; 问题(1)求AB的值.(2)求sin(2A+C)的值.

在三角形ABC中,AC=2,BC=1,COS C =3/4; 问题(1)求AB的值.(2)求sin(2A+C)的值.
1)根据余弦定理
AB²=AC²+BC²-2AC*BC*cosC
代入得
AB²=2²+1²-2x2x1x3/4=2
所以
AB=√2
2)
根据余弦定理
cosA=(AC²+AB²-BC²)/2AC*AB=5√2/8
sinA=√14/8
sin2A=2sinAcosA=2*5√2/8*√14/8=5√7/16
cos2A=9/16
cosC=3/4
sinC=√7/4
所以sin(2A+C)=sin2AcosC+cos2AsinC=5√7/16*3/4+5√2/8*√7/4=(15√7+10√14)/64