已知函数f(x)=x^3+ax^2,x=2是f(x)的一个极值点求f(x)在区间[-1,3]上的最大值和最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 17:38:00
已知函数f(x)=x^3+ax^2,x=2是f(x)的一个极值点求f(x)在区间[-1,3]上的最大值和最小值
xőN0_[6VuJ(Ex !!"T CЦ\

已知函数f(x)=x^3+ax^2,x=2是f(x)的一个极值点求f(x)在区间[-1,3]上的最大值和最小值
已知函数f(x)=x^3+ax^2,x=2是f(x)的一个极值点求f(x)在区间[-1,3]上的最大值和最小值

已知函数f(x)=x^3+ax^2,x=2是f(x)的一个极值点求f(x)在区间[-1,3]上的最大值和最小值
函数的导数为
f'(x)=3x^2+2ax
在x=2处有极值,即
f'(2)=3*2^2+2a*2
=0
得 a=-3
得 f(x)=x^3-3x^2
f''(x)=6x-6
在x=1处 f''(x)=0
即函数在x=1 处有最值
在区间[-1,3]上
f(-1)=-4
f(3)=0
f(1)=-2
所以函数的最大值和最小值分别为0, -4