3(2^2+1)(2^4+1)(2^8+1)……(2^32+1)+1的个位数是____
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/03 12:41:18
x)3~(HN06|\c*MmZXdoﳩX6IET2If`]fѦWK &di3FSb*L$ f!~qAb(@[q
3(2^2+1)(2^4+1)(2^8+1)……(2^32+1)+1的个位数是____
3(2^2+1)(2^4+1)(2^8+1)……(2^32+1)+1的个位数是____
3(2^2+1)(2^4+1)(2^8+1)……(2^32+1)+1的个位数是____
3(2^2+1)(2^4+1)(2^8+1)……(2^32+1)+1
=(2^2-1)(2^2+1)(2^4+1)(2^8+1)……(2^32+1)+1
=(2^4-1)(2^4+1)(2^8+1)……(2^32+1)+1
=(2^32-1)(2^32+1)+1
=(2^64-1)+1
=2^64
个位数是6
1/2÷【2/3×(1/8+1/4)】
1/2-(3/4-3/8),1/2+1/4-1/6 ,2/3+(1/2+1/4),1/2-(3/4-3/8),1/2+1/4-1/6 ,2/3+(1/2+1/4),
1/2-(3/4-3/8), 1/2+1/4-1/6 , 2/3+(1/2+1/4),1/2-(3/4-3/8), 1/2+1/4-1/6 , 2/3+(1/2+1/4),
1/2-(3/4-3/8),1/2+1/4-1/6 ,2/3+(1/2+1/4),1/2-(3/4-3/8),1/2+1/4-1/6 ,2/3+(1/2+1/4),
1,2,2,4,3,8,4,16,()()
计算:3(2²+1)(2^4+1)(2^8+1)(2^16+1)
4/5+(3/8-1/2)
找规律8、1、4、2、2、3、()、().
8,1,4,2,2,3,( ),( )
8+(-2)+(-4)+1+1+(-3)
(1,1,1).(2,4,8)...3Q
1 2 2 4 3 8 4 16 5 ()
1,2,2,4,3,8,4,16,5,( )
8(1)(2)(3)(4)
计算:3×(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1
(2+1)(2^2+1)(2^3+1)(2^4+1))(2^5+1)(2^6+1)(2^7+1)(2^8+1)(2^9+1)(2^16+1)(2^32+1)详细过程.3Q…
(2-3)-(5*7-8)+11-(9-6-4)*(3+1)= (1/2-3)*(1-1/2-1/3)*(-1-1/2)*(-4)*(-2-1/3)-(-4)*(-1/8)*(2-1-1/3)*(2-1-1/3)*(2+1/3-1/2)=有负数和绝对值感激不尽
1、(2+1)(2^2+1)(2^4+1)(2^8+1)-2^16 2、a^3c-4a^2bc+4ab^2c