lim(x→0) (e^(-1/x^2))/x^100

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 01:52:19
lim(x→0) (e^(-1/x^2))/x^100
x)ըx6@SA#5NCP"HSH$P_`gC):&>ٽٌ/`*TU005APYf؜'(@e%:O7l|oaUKڙyi% % SJR O>eG~qAfIbzSvy W<_Wn״/.H̳ l^˙}v9+z~'5/~eO[vm~6o]˟Mtԧ{n~ڿ`j

lim(x→0) (e^(-1/x^2))/x^100
lim(x→0) (e^(-1/x^2))/x^100

lim(x→0) (e^(-1/x^2))/x^100
我们易知:
(e^(-1/x^2))/x^100 = (1/x^100)/(e^(1/x^2)) = (1/x^2)^50/(e^(1/x^2))
令 1/x^2 = t,就得:
lim(x→0) (e^(-1/x^2))/x^100 = lim(t→+infty) t^50/e^t = 0 (使用L'Hospital's法则,这里infty表示无穷)

极限不存在
对e^(-1/x^2)进行麦克劳林级数展开即可