求极限 lim n[1/(n^2+1)+1/(n^2+2^2)+……+1/(n^n+n^n)] (n趋向于无穷大,n^n表示n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 12:35:13
求极限 lim n[1/(n^2+1)+1/(n^2+2^2)+……+1/(n^n+n^n)] (n趋向于无穷大,n^n表示n
x){ټƗ3'(d*EkijjCYFqFtj?jXDgth;IF#kQ5Cm0T@2h6X4HSA5q(@ ps  7tUW)k*T@%%$U(ԠF5TU Ml @r

求极限 lim n[1/(n^2+1)+1/(n^2+2^2)+……+1/(n^n+n^n)] (n趋向于无穷大,n^n表示n
求极限 lim n[1/(n^2+1)+1/(n^2+2^2)+……+1/(n^n+n^n)] (n趋向于无穷大,n^n表示n

求极限 lim n[1/(n^2+1)+1/(n^2+2^2)+……+1/(n^n+n^n)] (n趋向于无穷大,n^n表示n
=lim n^2·[1/(n^2+1)+1/(n^2+2^2)+……+1/(n^n+n^n)] /n
=lim [n^2/(n^2+1)+n^2/(n^2+2^2)+……+n^2/(n^n+n^n)]·(1/n)
=lim [1/(1+(1/n)^2) +1/(1+(2/n)^2) +……+ 1/(1+(n/n)^2))]·(1/n)
=∫《x从0到1》1/(1+x²) dx
=arctanx |《x从0到1》
=arctan1 - arctan0
=π/4