关于高数题 x趋向于0 lim f(x)/x=0时的问题 x趋向于0 lim f(x)/x=0,求x趋向0时 lim {[√1+f(x)]-1}/x注意根号下是 1+f(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 08:05:22
x){ںɮg<
/u?0(fQ_aklZ^N_OγMP9u2)5|w~ų+?[i';X Q`TO:)vܮ/ac+x6 *%M@SV@'Mʂ@%4Vlhd 4B)NC& nHvȺ yM 1a !NO
关于高数题 x趋向于0 lim f(x)/x=0时的问题 x趋向于0 lim f(x)/x=0,求x趋向0时 lim {[√1+f(x)]-1}/x注意根号下是 1+f(x)
关于高数题 x趋向于0 lim f(x)/x=0时的问题
x趋向于0 lim f(x)/x=0,求x趋向0时 lim {[√1+f(x)]-1}/x
注意根号下是 1+f(x)
关于高数题 x趋向于0 lim f(x)/x=0时的问题 x趋向于0 lim f(x)/x=0,求x趋向0时 lim {[√1+f(x)]-1}/x注意根号下是 1+f(x)
∵lim f(x)/x=0,
x→0
∴f(0) = 0,f'(0) = 0
∴lim {√[1+f(x)]-1}/x
x→0
= lim {½ f'(x)[1+f(x)]^(-½)}/1
x→0
= lim {½ f'(x)[1+f(x)]^(-½)}
x→0
= ½ f'(0)[1+f(0)]^(-½)}
= 0
高数题 lim{/}=?x趋向于0
f(x)={x x=1}求lim x趋向于1- f(x) lim x趋向于1+ f(x) lim趋向于1 f(x)f(x)={2x-1 x0} 求lim x趋向于0- f(x) lim x趋向于0+ f(x) lim趋向于0 f(x)
关于高数题 x趋向于0 lim f(x)/x=0时的问题 x趋向于0 lim f(x)/x=0,求x趋向0时 lim {[√1+f(x)]-1}/x注意根号下是 1+f(x)
设f'(x0) 存在,求lim[ f(x0-x)-f(x0)]/x,x趋向于0
若lim[x/f(3x)]=2(x趋向于0),则lim[f(2x)/x]=?(x趋向于0)
高数题:设f(x)>0,x趋向于a且lim f(x)=A ,试证:lim√f(x)=√A
lim X趋向于0 arcsin2x/sin3x
lim(x趋向于0)arctan2x/sin3x
x趋向于0 lim(tan2x/tan4x)
lim(x趋向于0)f(x)/x=2 则lim(x趋向于0)sin2x/f(3x)=?
设lim(X趋向于0) f(2X) / X等于2/3 则lim(X趋向0) X/ f(3X)等于?
Lim(X趋向于0)f(X)/X=1,f''(X)>0证明f(X)大于等于X
x趋向于0,lim f(x)/x=1,f''(x)>0,证明f(x)>x
设f(x)=e^(-x),则lim(x趋向于0) (f ' (1-2x)-f '(1)) / x
一道关于极限的题目已知当x趋向于正无穷,lim 3xf(x)=lim [4f(x)+6],则lim xf(x)=?
lim(x趋向于0)f(2x)/x=1,且f(x)连续,则f'(0)=
求解一道关于极限的题目已知lim[ln(1+x+f(x)/x)/x]=3,故lim(x+f(x))=0因而lim[ln(1+x+f(x)/x)/x]=lim[(x+f(x))/x]=3(x趋向于0)
求lim x趋向于0(e^x-x-1)