(2^2+4^2+6^2+...+(2n)^2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 18:22:06
xœN@_%Mk7->D̄U1
(H"F Hh
EV3&\4;wn[=$bdYI);5%w^f=w^iw7Bx@XT
wMWл1k)>qJƒg==Aj/38$ ͦYZ"'gv/d6ikYOjqٝmzF$ě晒뒲GM_9YX\ %$cs' qNس.0y~,"ф 3i+u rVPh¢_VVAblCs Ӝ MJi\{OvǏ*{.4Sl˺r:qm]
(2^2+4^2+6^2+...+(2n)^2
(2^2+4^2+6^2+...+(2n)^2
(2^2+4^2+6^2+...+(2n)^2
lz有没有把题目篡改?
是不是2^2+4^2+6^2+...+(2n)^2=2/3n(n+1)(2n+1) ?
要不n=1的时候,原公式=2^2+4^2=20<>2/3*1*2*3
虽然(2n)^2=4n^2,不过放在公式里面,概念不一样的
证明:
1、当n=1时,2^2=2/3*1*2*3,符合题述公式
2、下面证明,当f(n)=2^2+4^2+6^2+...+[2n]^2=2/3*n(n+1)(2n+1)时
f(n+1)=2^2+4^2+6^2+...+[2n]^2+[2(n+1)]^2=2/3*(n+1)(n+2)(2n+3)
f(n+1)=f(n)+[2(n+1)]^2
=2/3*n(n+1)(2n+1)+[2(n+1)]^2
=[2n(n+1)(2n+1)+12(n+1)(n+1)]/3
=[4n^2+2n+12n+12](n+1)/3
=[4n^2+14n+12](n+1)/3
=2[2n^2+7n+6](n+1)/3
=2(2n+3)(n+2)(n+1)/3
=2/3*(n+1)(n+2)(2n+3)
综上所述,当f(n)=2^2+4^2+6^2+...+[2n]^2=2/3*n(n+1)(2n+1)时
f(n+1)=2^2+4^2+6^2+...+[2n]^2+[2(n+1)]^2=2/3*(n+1)(n+2)(2n+3)
又因为当n=1时,2^2=2/3*1*2*3,符合题述公式
所以题述公式成立
满意请采纳.