(2+1)(2^2+1)(2^4+1)...(2^2n+1)+1(n是正整数)计算

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 12:53:15
(2+1)(2^2+1)(2^4+1)...(2^2n+1)+1(n是正整数)计算
x){HN#ifA$\ёlgk? @>_7&H l ӧakT $PX&B]D%EȪLtJ[b7ʃ,4(̳/.H̳ ޏCL7IL`h _d*

(2+1)(2^2+1)(2^4+1)...(2^2n+1)+1(n是正整数)计算
(2+1)(2^2+1)(2^4+1)...(2^2n+1)+1(n是正整数)计算

(2+1)(2^2+1)(2^4+1)...(2^2n+1)+1(n是正整数)计算
(2+1)(2^2+1)(2^4+1)...(2^2n+1)+1
=1*(2+1)(2^2+1)(2^4+1)...(2^2n+1)+1
=(2-1)(2+1)(2^2+1)(2^4+1).(2^2n+)+1
=(2^2-1)(2^2+1)(2^4+1).(2^2n+1)+1
=(2^4-1)(2^4+1).(2^2n+1)+1
=(2^8-1).(2^2n+1)+1
=(2^2n-1)(2^2n+1)+1
=2^4n-1+1
=2^4n

=(2-1)(2+1)(2^2+1)(2^4+1)...(2^2^n+1)+1
=(2^2-1)(2^2+1)(2^4+1)...(2^2^n+1)+1
=(2^4-1)(2^4+1)...(2^2^n+1)+1
=2^2^(n+1)-1+1
=2^2^(n+1)