(2+1)(2^2+1)(2^4+1)...(2^2n+1)+1(n是正整数)计算
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 12:53:15
x){HN#ifA$\ёlgk?
@>_7&Hl
ӧakT
$PX&B]D%EȪLtJ[b7ʃ,4(̳/.H̳
ޏCL7IL`h
_ d*
(2+1)(2^2+1)(2^4+1)...(2^2n+1)+1(n是正整数)计算
(2+1)(2^2+1)(2^4+1)...(2^2n+1)+1(n是正整数)计算
(2+1)(2^2+1)(2^4+1)...(2^2n+1)+1(n是正整数)计算
(2+1)(2^2+1)(2^4+1)...(2^2n+1)+1
=1*(2+1)(2^2+1)(2^4+1)...(2^2n+1)+1
=(2-1)(2+1)(2^2+1)(2^4+1).(2^2n+)+1
=(2^2-1)(2^2+1)(2^4+1).(2^2n+1)+1
=(2^4-1)(2^4+1).(2^2n+1)+1
=(2^8-1).(2^2n+1)+1
=(2^2n-1)(2^2n+1)+1
=2^4n-1+1
=2^4n
=(2-1)(2+1)(2^2+1)(2^4+1)...(2^2^n+1)+1
=(2^2-1)(2^2+1)(2^4+1)...(2^2^n+1)+1
=(2^4-1)(2^4+1)...(2^2^n+1)+1
=2^2^(n+1)-1+1
=2^2^(n+1)
(1+1/2)(1+1/2^2)(1+1/2^4)^(1+1/2^32)
计算:(2+1)({2}^{2}+1)({2}^{4}+1)({2}^{8}+1)...({2}^{256}+1)
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^2048+1),
(2+1)(2^2-1)(2^4+1)(2^8+1)(2^16-1)(2^32+1)(2^64+1)
(1+1/2)(1+1/2^2)(1+1/2^4)(1+1/2^8)+1/2^15
计算:(1+2)(1+2^2)(1+2^4)(1+2^8)(1+2^16)(1+2^32)(1+2^64)
(-2k-1)^2+4(-k^2+1)
(2^2+1)*(2^4+1)*(2^8+1)*(2^16+1)*(2^32+1)
-1/2+(-1/6)-(-1/4)-2/3
化简(1+2^(-1/32))(1+2^(-1/16))(1+2^(-1/8))(1+2^(-1/4))(1+2^(-1/2))
(1)(2)
(1) (2)
(1)(2)
(1),(2).
(1)(2)
(1)(2)
(1)(2),
(1) (2)