求lim(n->无穷)(3n+5)/(n^2+n+4)^1/2的极限

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 10:41:51
求lim(n->无穷)(3n+5)/(n^2+n+4)^1/2的极限
x){)'3W#OWn06ȋ36ь37z>ټƗ3'$铪EΆ,{EUUamTTT 6VC~\l >sv|>e=`}t="Ŷ' CdǮ M浼lXmk ظhS$t{l8 ]#M8]#M;~:{^6H

求lim(n->无穷)(3n+5)/(n^2+n+4)^1/2的极限
求lim(n->无穷)(3n+5)/(n^2+n+4)^1/2的极限

求lim(n->无穷)(3n+5)/(n^2+n+4)^1/2的极限
lim(n->无穷)(3n+5)/(n^2+n+4)^1/2=lim(n->无穷) (3n+5)/[ n(1+1/n+4/n^2)^(1/2)
= lim(n->无穷) (3+5/n)/(1+1/n+4/n^2)^(1/2)
= 3.

利用(1+1/n)^n在n趋于无穷极限为e。构造[1+(-6)/(3n^2+4)]^[(3n^2+4)/(-6)] 形式。结果为e^(-2) e^-2 点击图片可以