已知函数f(x)=alnx-1/x,a∈R(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直,求a的值(2)求函数f(x)的单调区间(3)当a=1,且x≥2时,证明:f(x-1)≤2x-5 求解答 .详细一点 感谢

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:32:33
已知函数f(x)=alnx-1/x,a∈R(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直,求a的值(2)求函数f(x)的单调区间(3)当a=1,且x≥2时,证明:f(x-1)≤2x-5 求解答 .详细一点 感谢
xVKo@+2l̏R$ZEQ{qV" mLCjɣ2*&R@MHpʉЙ5,P|fKj){~n3}KVAQ/jעjOTte%0to Bi#}lNɫBe%ᘫG*,@h kNfI|IUݩhBSvw΢~k-=1^!k\_Po}N ߮OS=!7"?^T|)z4a)—V0 ȽG!}&T =n^i9Q3*DR(6,GBIC69  2PVTDѡ1Qa1/Gb CQRM'B#4 ;s+NRC-uzH_.i6)a9>e{E+5HěU28`NKe)8dž-n33ð i*(*c'ȫMLzǃ'&'aicGW}Kb M:8`)t8( bI;on-=44o?‡2we BRFt*YF0XlC9!Dk?Ύ^U(k|H<Ş~@@m!6n2Z& [ 9RZ~ۿ"4Y`B0|v罻 !`D 4V yN}APh#UxpA%V@_hqD^eza6i$&XV3L+c@G@X ooe tk"gg~NnnLOR945Qކ[/9U/2>nyi~e

已知函数f(x)=alnx-1/x,a∈R(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直,求a的值(2)求函数f(x)的单调区间(3)当a=1,且x≥2时,证明:f(x-1)≤2x-5 求解答 .详细一点 感谢
已知函数f(x)=alnx-1/x,a∈R
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直,求a的值
(2)求函数f(x)的单调区间
(3)当a=1,且x≥2时,证明:f(x-1)≤2x-5

求解答 .详细一点 感谢 感谢.

已知函数f(x)=alnx-1/x,a∈R(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直,求a的值(2)求函数f(x)的单调区间(3)当a=1,且x≥2时,证明:f(x-1)≤2x-5 求解答 .详细一点 感谢
已知函数f(x)=alnx-1/x,a∈R
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直,求a的值
f’(x)=a/x+1/x^2
f’(1)=a+1
x+2y=0斜率k=-1/2
切线斜率=2
a+1=2
a=1
(2)求函数f(x)的单调区间
f’(x)=a/x+1/x^2
令f’(x)=0
a/x+1/x^2=0
x=-1/a
f’’(x)=-a/x^2-2/x^3
f’’(-1/a)=-a/(1/a^2)+2/(1/a^3)
=-a^3+2a^3=a^3
a>0 f’’(-1/a)>0
f(-1/a)为极小值
x-1/a f(x)增
a

(1)函数f(x)的定义域为{x|x>0},f′(x)=
ax+1x2.
又曲线y=f(x)在点(1,f(1))处的切线与直线x+2y-50垂直,
所以f'(1)=a+1=2,即a=1. (2)由f′(x)=
ax+1x2,
当a≥0时,f'(x)>0恒成立,所以f(x)的单调增区间为(0,+∞).
当a...

全部展开

(1)函数f(x)的定义域为{x|x>0},f′(x)=
ax+1x2.
又曲线y=f(x)在点(1,f(1))处的切线与直线x+2y-50垂直,
所以f'(1)=a+1=2,即a=1. (2)由f′(x)=
ax+1x2,
当a≥0时,f'(x)>0恒成立,所以f(x)的单调增区间为(0,+∞).
当a<0时,由f'(x)>0,得0<x<-
1a,所以f(x)的单调增区间为(0,-
1a);
由f'(x)<0,得x>-
1a,所以f(x)的单调减区间为(-
1a,+∞). (3)设g(x)=alnx-1x-2x+3,x∈[1,+∞),∴g′(x)=
-2x2+ax+1x2
设h(x)=-2x2+ax+1,h(0)=1>0
当a≤1时,h(x)=-2x2+ax+1的对称轴为x=
a4<1,h(x)在[1,+∞)上是减函数,h(x)≤h(1)=a-1≤0
∴g′(x)≤0,g(x)在[1,+∞)上是减函数
∴g(x)≤g(1)=0,即f(x)≤2x-3
当a>1时,令h(x)=-2x2+ax+1=0得x1=
a+
a2+84>1,x2=
a-
a2+84< 0
当x∈[1,x1)时,h(x)>0,g′(x)>0,g(x)在[1,x1)上是增函数;
当x∈(x1,+∞)时,h(x)<0,g′(x)<0,g(x)在[1,x1)上是减函数;
∴g(1)<g(x1),即f(x1)>2x-3,不满足题意
综上,实数a的取值范围为a≤1

收起

已知函数f(x)=alnx+1/x 当a 已知函数f(x)=x-alnx(a ∈R )求函数的极值 已知函数f(x)=2x-alnx.设若a 已知函数f(x)=((x^2)/2)-alnx(a 已知函数f(x)=x^2-x+alnx(x>=1),当a 已知函数f(x)=x^2-x+alnx(x≥1),当a 已知函数f(x)=√(x+1)-alnx(a∈R),求f(x)的单调区间 已知函数f(x)=x2-2(a+1)x+2alnx求f(x)单调区间 已知函数f(x)=x-alnx,若a =1,求函数的极值 已知函数f(x)=alnx-(x-1)²-ax(常数a∈R).求函数f(x)的单调区间 已知函数f(x)=x^2-alnx(a∈R).(1)若a=2,求函数f(x)的单调区间已知函数f(x)=x^2-alnx(a∈R)(1)若a=2,求函数f(x)的单调区间;(2)求f(X)在[1,e]上的最小值 已知函数f(x)=x2-alnx(a属于R)求f(x)在【1,e】上的最小值 已知函数f(x)=1/2x^2+alnx(a∈R,a≠0),求f(x)的单调区间 已知函数f(x)=x+alnx,(a∈R)设F(x)=f(x)-(a+2)x+(1/2)x^2,试讨论函数y=F(x)的零点个数. 已知函数f(x)=x2-(2a+1)x+alnx(a∈R) 当a=1时,求函数f(x)的单调增区间已知函数f(x)=x2-(2a+1)x+alnx(a∈R)当a=1时,求函数f(x)的单调增区间. 已知函数f(x)=x²/2-alnx,g(x)=x²(f’(x)-a)+ax,a∈R,其中f’(x)是f(x)的导函数已知函数f(x)=x²/2-alnx,g(x)=x²(f’(x)-a)+ax,a∈R,其中f‘(x)是f(x)的导函数(1) 设函数f(x)=x-1/x- alnx(a∈R)设函数f(x)=x-1/x-alnx(a∈R) a=3时求f(x)的单调区间 已知函数f(x)=alnx+(a+1)/2x^2+1讨论函数f(x)的单调性