f(X)为定义在R上的偶函数,在区间(-无穷,0]上递增,且有f(2a的平方+a+1)0后却得到2a的平方+a+1>3a的平方-2a+1,谁能给我详细的讲讲,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:23:37
f(X)为定义在R上的偶函数,在区间(-无穷,0]上递增,且有f(2a的平方+a+1)0后却得到2a的平方+a+1>3a的平方-2a+1,谁能给我详细的讲讲,
xTݎP~Ӧ]cۇM 5), ]uWV$UиuP|WsN[+Fo&曙onx-ϩv7[Qq*3fꓰ9\&7XBz{~D0:E@Ok&9 l`l>}OtA3|X=/Tk?*a ;c9@7id7w yN,QA0\ EB茤ߖTDWV ٫4!l]4D5ɀ$2E T \Vqqꗼ駰4­2^EزGdIuE^G4{-,j^]- """­/P7a4(@۞'ﶖ*G1]X`40r,B?,*VDKBj0>` e[8j@_p[8V 5#^˗׉Jc0ZI#HW rpdp(W7DNW䆒SdR[fb`i<ϯ K=t\XXv?jL4(ہS|?]S_V",]

f(X)为定义在R上的偶函数,在区间(-无穷,0]上递增,且有f(2a的平方+a+1)0后却得到2a的平方+a+1>3a的平方-2a+1,谁能给我详细的讲讲,
f(X)为定义在R上的偶函数,在区间(-无穷,0]上递增,且有f(2a的平方+a+1)0后却得到2a的平方+a+1>3a的平方-2a+1,谁能给我详细的讲讲,

f(X)为定义在R上的偶函数,在区间(-无穷,0]上递增,且有f(2a的平方+a+1)0后却得到2a的平方+a+1>3a的平方-2a+1,谁能给我详细的讲讲,
f(X)为定义在R上的偶函数,在区间(-无穷,0]上递增,
那么,f(x)关于 y轴成轴对称.而f(x)在(0,+无穷)上是递减的、
而 2a^2+a+1=2(a^2+1/2a+1/16)+7/8=2(x+1/2)^2+7/8.>0
3a^2-2a+1=3(a^2-2/3a+1/9)+2/3=(3(a-1/3)^2+2/3>0
它们都在(0,+无穷)内,且随自变量的增大而减小.因此 当f(2a^2+a+1)3a^2-2a+1

因为f(x )为偶函数,偶函数的性质是f(x)=f(-x)。也就是以y轴对称
在区间(-无穷,0]上递增,说明在在区间(0,正无穷)上递减
函数值越大,x越小,所以2a的平方+a+1>3a的平方-2a+1

因为:f(x)为偶函数
所以:f(2a²+a+1)<=> f(-2a²-a-1)而-2a²-a-1=-2(a+1/4)²-7/8<0
-3a²+2a-1=-3(a-1/3)²-2/3<0
因为:f(x) 在区间(-∞,0)内是...

全部展开

因为:f(x)为偶函数
所以:f(2a²+a+1)<=> f(-2a²-a-1)而-2a²-a-1=-2(a+1/4)²-7/8<0
-3a²+2a-1=-3(a-1/3)²-2/3<0
因为:f(x) 在区间(-∞,0)内是增函数
所以:f(-2a²-a-1)<=>-2a²-a-1<-3a²+2a-1
解得:{a|0

收起

定义为R上的偶函数f(x)在区间[0,正无穷)上单调递减,若f(1) 定义在R上偶函数f(x)的单调递减区间为[0,+∞),则不等式f(x) 定义在R上偶函数f(x)的单调递减区间为[0,+∞),则不等式f(x) 定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间[-1,0]上为递增,则A、f(3) 定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间[-1,0]上为递增,则A、f(3) 定义在R上的偶函数f(x)在区间(负无穷,0】上单调递增,若f(a+1) 定义在R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(1) f(x)为定义在R上的偶函数,在区间(-∞,0]上单调递增,且有f(2a+1) 已知定义在R上的偶函数f(x)在区间[0,+∞)是单调增若f(1) 已知定义在R上的偶函数F(X)满足F(X+1)=-F(x),且在区间【-1.0】上为偶函数答案是F(1)=F(3) 已知函数f(x)是定义在R上的偶函数,其减区间为[0,+无穷),则不等式f(X) 若定义在R上的偶函数f(x)满足f(x+1)=-f(x)且在区间[-1,0]上递增则A.f(3) 设f(x)为定义在R上的偶函数,当x过程啊.... 定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间【-1,0】上为递增,则求f(3)、f(根号二)、f(2)的大小关系. 定义在R上的偶函数f(x),满足f(x+1)=-f(X),且在区间[-1,0]上为递增,则f(3),f(根号2)f(2)的大小关系是 定义在R上的偶函数f(x),满足f(x+2)=f(x),且在区间【-1,0】上为增函数,比较f(2),f(3),f(根号2)的大小 定义在R上的偶函数f(x),满足f(x+1)=-f(X),且在区间[-1,0]上为递增,则f(3),f(根号2)f(2)的大小关系是 定义在R上的偶函数f(x),满足f(x+1)=-f(x),且在区间{-1,0}上为递增,则 f(3),f(2),f(√2)大小