a,b,c属于R+求证:a^2/(b+c)+b^2/(a+c)+c^2/(a+b)>=(a+b+c)/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:40:53
a,b,c属于R+求证:a^2/(b+c)+b^2/(a+c)+c^2/(a+b)>=(a+b+c)/2
xMK0ǿ$d]>W.݉YC6APeEmELe%?oy0;B&Tł\#DUĈ[ 0$ ^qHe]b,`CQulyōzLU'zbb.c[!#maV}AR͆r57KͶS9ӯJp٧̗bP/C5=r9t8m**t^3L` q?b g

a,b,c属于R+求证:a^2/(b+c)+b^2/(a+c)+c^2/(a+b)>=(a+b+c)/2
a,b,c属于R+
求证:a^2/(b+c)+b^2/(a+c)+c^2/(a+b)>=(a+b+c)/2

a,b,c属于R+求证:a^2/(b+c)+b^2/(a+c)+c^2/(a+b)>=(a+b+c)/2
先介绍重要的柯西不等式:
(a1²+b1²+c1²)(a2²+b2²+c2²)>=(a1a2+b1b2+c1c2)²
用文字表达即:方和积>=积和方
[a²/(b+c)]+b²/(a+c)+c²/(a+b)]((b+c)+(a+c)+(a+b))
≥(a+b+c)²
所以a²/(b+c)+b²/(a+c)+c²/(a+b)≥(1/2)(a+b+c)