判断函数的奇偶性 (1) f(x)=loga[x+根号内(x²+1)】(2)f(x)={[根号内(x²+1)]+(x-1)}/{[根号内(x²+1)]+(x+1)}

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 01:20:47
判断函数的奇偶性 (1) f(x)=loga[x+根号内(x²+1)】(2)f(x)={[根号内(x²+1)]+(x-1)}/{[根号内(x²+1)]+(x+1)}
xR]KA+ A첮RЮ Y%Je X $"P쿨3ړV7C𡇞vgνܫF| g n>JзL( aIv(dr5%7d( ;F0q e)POTK-s0ӮZ{؃ 0C@0OS~)t0ޗ#IDc6z*~C R:#7n:OܨLͫ}( 6@I2rndz׶N> p '`mM:wj;=!AA`1μLt֡e]6YUIKů"~`78[Kˬ0fӔQi>N5M@ VdV+34wo#6N.Jm |&

判断函数的奇偶性 (1) f(x)=loga[x+根号内(x²+1)】(2)f(x)={[根号内(x²+1)]+(x-1)}/{[根号内(x²+1)]+(x+1)}
判断函数的奇偶性 (1) f(x)=loga[x+根号内(x²+1)】
(2)f(x)={[根号内(x²+1)]+(x-1)}/{[根号内(x²+1)]+(x+1)}

判断函数的奇偶性 (1) f(x)=loga[x+根号内(x²+1)】(2)f(x)={[根号内(x²+1)]+(x-1)}/{[根号内(x²+1)]+(x+1)}
(1) f(x)=loga[x+根号内(x²+1)】,
f(-x)=loga[-x+根号内(x²+1)】=loga1/[x+根号内(x²+1)】=-loga[x+根号内(x²+1)】=-f(x),
所以f(x)是奇函数.
(2)f(x)={[根号内(x²+1)]+(x-1)}/{[根号内(x²+1)]+(x+1)}
分母有理化,并整理得:f(x)={根号内(x²+1)+x}/x=根号内(1+1/x^2)+1
显然f(-x)=f(x),这是个偶函数.

(1) f(x)=loga[x+根号内(x²+1)】
解析:f(-x)=loga[-x+√(x²+1)]=loga[√(x²+1)-x]=-loga[√(x²+1)+x]=-f(x)
∴以f(x)是奇函数。
(2)f(x)={[根号内(x²+1)]+(x-1)}/{[根号内(x²+1)]+(x+1)}
解析...

全部展开

(1) f(x)=loga[x+根号内(x²+1)】
解析:f(-x)=loga[-x+√(x²+1)]=loga[√(x²+1)-x]=-loga[√(x²+1)+x]=-f(x)
∴以f(x)是奇函数。
(2)f(x)={[根号内(x²+1)]+(x-1)}/{[根号内(x²+1)]+(x+1)}
解析:∵f(x)=[√(x²+1)+(x-1)]/[√(x²+1)+(x+1)]
=[√(x²+1)+(x-1)] [√(x²+1)-(x+1)]/[(x²+1)-(x+1)^2]
=[√(x²+1)-1]/x
F(-x)=- [√(x²+1)-1]/x=-f(x)
∴f(x)为奇函数

收起