(a+b+c)的平方=3(ab+bc+ac) 证明a=b=c

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 01:19:30
(a+b+c)的平方=3(ab+bc+ac) 证明a=b=c
xNPU.mİ <9' : d$ buc0v ~=\ Iw휯h`"+$32 & ");{+gSa*onvhmGs _": #bdE\M0@ lٳ{u-@L@i`LCYENJqoH@pJFB Gv~.; +omh[/RWvDiWŶ6sfrѾhpW/ 52*opNxR^*1Py̋"e\ٲ`x<o'jJtYyi+I*J$~~YXxD@UIPp~ABM~ oXvi뺸7+SxR ^ uq{RAsGwAz5R~Un$bO0TU~bXLH_}&P.|k[;,λsZݥfX96`_-AM&@,?hnw2Cf^TM8>67938iA:M0t>zxD 㔇# 猀}<''ReDf@dsN,cF+SEX8Ŕ!r~Ҡ0YSBxIagA>s~-bX3ekaHzf^

(a+b+c)的平方=3(ab+bc+ac) 证明a=b=c
(a+b+c)的平方=3(ab+bc+ac) 证明a=b=c

(a+b+c)的平方=3(ab+bc+ac) 证明a=b=c
即啊²+b²+c²+2ab+2bc+2ac=3ab+3bc+3ac
a²+b²+c²-ab-bc-ac=0
两边乘2
2a²+2b²+2c²-2ab-2bc-2ac=0
(a²-2ab+b²)+(b²-2bc+c²)+(c²-2ac+a²)=0
(a-b)²+(b-c)²+(c-a)²=0
平方大于等于0,相加等于0,若有一个大于0,则至少有一个小于0,不成立.
所以三个都等于0
所以a-b=0,b-c=0,c-a=0
a=b,b=c,c=a
所以a=b=c

(a+b+c)^2=3(ab+bc+ac)
a^2+b^2+c^2+2ab+2bc+2ac=3ab+3bc+3ac
a^2+b^2+c^2-ab-bc-ca=0
1/2(a^2+b^2-2ab+b^2+c^2-2bc+c^2+a^2-2ac)=0
1/2((a-b)^2+(b-c)^2+(c-a)^2)=0
所以,a=b,b=c,c=a
所以, ...

全部展开

(a+b+c)^2=3(ab+bc+ac)
a^2+b^2+c^2+2ab+2bc+2ac=3ab+3bc+3ac
a^2+b^2+c^2-ab-bc-ca=0
1/2(a^2+b^2-2ab+b^2+c^2-2bc+c^2+a^2-2ac)=0
1/2((a-b)^2+(b-c)^2+(c-a)^2)=0
所以,a=b,b=c,c=a
所以, a=b=c
该三角形是等边三角形
-------------【望采纳,O(∩_∩)O谢谢】

收起


引理:a^2+b^2+c^2≥ab+bc+ca
证明:左减右,
a^2+b^2+c^2-ab-bc-ca
=[(a-b)^2+(b-c)^2+(c-a)^2]\2≥0,
等号当且仅当a=b=c时取到
原题:
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca
≥ab+bc+ca+2ab+2bc+2ca
=3a...

全部展开


引理:a^2+b^2+c^2≥ab+bc+ca
证明:左减右,
a^2+b^2+c^2-ab-bc-ca
=[(a-b)^2+(b-c)^2+(c-a)^2]\2≥0,
等号当且仅当a=b=c时取到
原题:
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca
≥ab+bc+ca+2ab+2bc+2ca
=3ab+3bc+3ca
等号当且仅当a=b=c时取到
又因为题目已知(a+b+c)^2=3ab+3bc+3ca
所以等号取到,为a=b=c

收起

证明:
(a+b+c)²
=a²+b²+c²+2ab+2ac+2bc
=½(2a²+2b²+2c²+4ab+4ac+4bc)
=½[(a²+b²-2ab)+(b²+c²-2bc)+(a²+c²-2ac)+6ab+6ac...

全部展开

证明:
(a+b+c)²
=a²+b²+c²+2ab+2ac+2bc
=½(2a²+2b²+2c²+4ab+4ac+4bc)
=½[(a²+b²-2ab)+(b²+c²-2bc)+(a²+c²-2ac)+6ab+6ac+6bc]
=½[(a-b)²+(b-c)²+(a-c)²]+3ab+36ac+36bc=3(ab+bc+ac)
∴(a-b)²+(b-c)²+(a-c)²=0
∴a-b=0 b-=c=0 a-c=0
∴a=b=c

收起