设f(x)是定义域在R上的偶函数,其图象关于直线X=1对称,对任意X1,X2属于[0,1\2],都有f(x1+x2)=f(x1)f(x2)且f(1)=a>0 记An=f(2n+1/2n) 求An

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 13:25:53
设f(x)是定义域在R上的偶函数,其图象关于直线X=1对称,对任意X1,X2属于[0,1\2],都有f(x1+x2)=f(x1)f(x2)且f(1)=a>0 记An=f(2n+1/2n) 求An
xSN@,lpvRٖ[E t"h\½D<$މ04"䡋aݽrow0ʤ7ތ]W}b Sjbg :bػNa~XH1֗ 謐("PE!Eap(C$I |A!#VB:+QefXy A(R^g]fi(3 \-0 .i{W[R9Z;ZֵR6g.Ljpwlz4cg_

设f(x)是定义域在R上的偶函数,其图象关于直线X=1对称,对任意X1,X2属于[0,1\2],都有f(x1+x2)=f(x1)f(x2)且f(1)=a>0 记An=f(2n+1/2n) 求An
设f(x)是定义域在R上的偶函数,其图象关于直线X=1对称,对任意X1,X2属于[0,1\2],都有f(x1+x2)=f(x1)f(x2)
且f(1)=a>0 记An=f(2n+1/2n) 求An

设f(x)是定义域在R上的偶函数,其图象关于直线X=1对称,对任意X1,X2属于[0,1\2],都有f(x1+x2)=f(x1)f(x2)且f(1)=a>0 记An=f(2n+1/2n) 求An
f(x)是定义域在R上的偶函数,
∴f(-x)=f(x).
其图象关于直线X=1对称,
∴f(1+x)=f(1-x),
∴f(2+x)=f[1-(1+x)]=f(-x)=f(x),
∴f(x)是周期为2的函数.
对任意X1,X2∈[0,1/2],都有f(x1+x2)=f(x1)f(x2),
首先,x∈[0,1/2]时f(x)≠0,否则,存在m∈[0,1/2],使得f(m)=0,则
f(1/2)=f(m+1/2-m)=f(m)f(1/2-m)=0,
f(1)=[f(1/2)]^2=0,矛盾.
其次,x∈[0,1/2]时,f(x)=[f(x/2)]^2>0.
第三,[f(1/6)]^6=[f(1/3)*f(1/6)]^2=[f(1/2)]^2=f(1)=a,∴f(1/6)=a^(1/6).
类似地,f[1/(2n)]=a^[1/(2n],
∴An=f[2n+1/(2n)]=f[1/(2n)]=a^[1/(2n)].

要求什么?