已知方程X²+PX+Q=0的两根均为正整数,且P+Q=28,那么这个方程两根为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:21:59
xN@_eRKʍk@G
F
D`TLløt&Ļ^c]vkVWKk涵U.嬝xЗPOy0lCXa:f{/+;?e4_
D(Y9``((jIMo5h$;| (5@~헽]'o̓\
已知方程X²+PX+Q=0的两根均为正整数,且P+Q=28,那么这个方程两根为
已知方程X²+PX+Q=0的两根均为正整数,且P+Q=28,那么这个方程两根为
已知方程X²+PX+Q=0的两根均为正整数,且P+Q=28,那么这个方程两根为
设方程两根分别为 a、b ,
由二次方程根与系数的关系得 a+b= -P ,ab=Q ,
因此 P+Q= -(a+b)+ab=28 ,
所以 (a-1)(b-1)=29 ,
由于 a、b 均为正整数,因此 a-1>=0 ,b-1>=0 ,
由 29=1*29 得 a-1=1 ,b-1=29 或 a-1=29 ,b-1=1 ,
解得 a=2 ,b=30 或 a=30 ,b=2 ,
也即方程的两个根为 2 和 30 .