已知函数:f(x)=x^2+bx+c,其中:0≤b≤4,0≤c≤4 (1)若a∈N,b∈N,求方程f(x)=0有负实根的概率已知函数:f(x)=x^2+bx+c,其中:0≤b≤4,0≤c≤4(1)若a∈N,b∈N,求方程f(x)=0有负实根的概率(2)记函数f(x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 07:48:30
已知函数:f(x)=x^2+bx+c,其中:0≤b≤4,0≤c≤4 (1)若a∈N,b∈N,求方程f(x)=0有负实根的概率已知函数:f(x)=x^2+bx+c,其中:0≤b≤4,0≤c≤4(1)若a∈N,b∈N,求方程f(x)=0有负实根的概率(2)记函数f(x
已知函数:f(x)=x^2+bx+c,其中:0≤b≤4,0≤c≤4 (1)若a∈N,b∈N,求方程f(x)=0有负实根的概率
已知函数:f(x)=x^2+bx+c,其中:0≤b≤4,0≤c≤4
(1)若a∈N,b∈N,求方程f(x)=0有负实根的概率
(2)记函数f(x)满足条件:f(2)≤12,f(-1)≤3 的事件为A,求事件A发生的概率
已知函数:f(x)=x^2+bx+c,其中:0≤b≤4,0≤c≤4 (1)若a∈N,b∈N,求方程f(x)=0有负实根的概率已知函数:f(x)=x^2+bx+c,其中:0≤b≤4,0≤c≤4(1)若a∈N,b∈N,求方程f(x)=0有负实根的概率(2)记函数f(x
一问判别式=b^2-4*1*c≥0 当b c都为自然数时,有5*5=25种可能,满足题意的有(4,0)(4,1)(4,2)(4,3)(4,4)(3,0)(3,1)(3,2)(2,0)(2,1)(1,0)11种,所以P=11/25
二问f(2)=4+2b+c≤12 即2b+c≤8,因为0≤b≤4,0≤c≤4 所以0≤2b+c≤12 概率为8/12=2/3
f(-1)=1-b+c≤3即c≤b+2,因为0≤b≤4,0≤c≤4所以2≤b+2≤6,此时只需c≤2即可,概率为2/4=1/2
所以同时满足的概率为2/3*1/2=1/3
第二问估计存在问题,两个是相关事件
答:p(A)=1/2 ∵f(2)=4+2b+c≤12 f(-2)= 4-2b+c≤4 且0<≤b<≤4,0<≤c<≤4 如图建立坐标系 灰色部分为事件A发生的部分 则事件A发生的概率为面积比 p(A)=A的面积÷总面积=(1÷2×4×4)÷(4×4)=1/2 全部展开 答:p(A)=1/2 ∵f(2)=4+2b+c≤12 f(-2)= 4-2b+c≤4 且0<≤b<≤4,0<≤c<≤4 如图建立坐标系 灰色部分为事件A发生的部分 则事件A发生的概率为面积比 p(A)=A的面积÷总面积=(1÷2×4×4)÷(4×4)=1/2 收起 (1)是c∈N,b∈N;所以c的可能取值有5种;b的可能取值也有5种;所以总情况有:5乘5=25种;而f(x)=0有负实根;应满足对称轴在Y轴左侧;-b/2<0;所以b不等于0; 然后差别式应大于等于0;得b^2-4c>=0;满足条件的有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2),(4,3),(4,4);所以概率为:11/25; (2)f(2)=4+2b+c≤12 且 f(-2)=4-2b+c≤4,而总条件为:0≤b≤4,0≤c≤4; 以b为X轴,c为Y轴;画出它们的区域;图如 解法如上面朋友的一样; 第一问ssh898576 ,856821xian回答的都是对的
第二问是用线性规划解题,yzyzckw回答中图片的2条直线方程分别是2b+c-8=0,c-2b=0,因此f(2)=4+2b+c≤12 f(-2)= 4-2b+c≤4合起来是灰色区域
你的问题都已经有人解答了,为何不采纳他们的答案呢?