若n是正整数,3n+1是完全平方数,试证明n+1是3个完全平方数的和若n是正整数,3n+1是完全平方数,试证明n+1是3个完全平方数的和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 13:38:26
若n是正整数,3n+1是完全平方数,试证明n+1是3个完全平方数的和若n是正整数,3n+1是完全平方数,试证明n+1是3个完全平方数的和
若n是正整数,3n+1是完全平方数,试证明n+1是3个完全平方数的和
若n是正整数,3n+1是完全平方数,试证明n+1是3个完全平方数的和
若n是正整数,3n+1是完全平方数,试证明n+1是3个完全平方数的和若n是正整数,3n+1是完全平方数,试证明n+1是3个完全平方数的和
【不好意思,看到题目时太晚了】
因为3n+1是完全平方数
所以 设3n+1=m²(m为整数)
所以 3n=m²-1=(m+1)(m-1)
所以 n=(m+1)(m-1)/3
因为 n是正整数
所以 3整除(m-1),或3整除(m+1)
所以 m-1=3k或m+1=3k(k为整数)
所以 m=3k±1
把m=3k±1代入3n+1=m²,
得 3n+1=(3k±1)²
3n+1=9k²±6k+1
3n=9k²±6k
n=3k²±2k
所以 n+1
=3k²±2k+1
=k²+k²+(k²±2k+1)
=k²+k²+(k±1)²
即 n+1能表示成 3个完全平方数的和,原命题得证
【恳请楼主不要直接关闭问题呀,因为似乎您有这个不良“癖好”,】
【不好意思,看到题目时太晚了】
因为3n+1是完全平方数
所以 设3n+1=m²(m为整数)
所以 3n=m²-1=(m+1)(m-1)
所以 n=(m+1)(m-1)/3
因为 n是正整数
所以 3整除(m-1),或3整除(m+1)
所以 m-1=3k或m+1=3k(k为整数)
所以 m=3k±1
把m=...
全部展开
【不好意思,看到题目时太晚了】
因为3n+1是完全平方数
所以 设3n+1=m²(m为整数)
所以 3n=m²-1=(m+1)(m-1)
所以 n=(m+1)(m-1)/3
因为 n是正整数
所以 3整除(m-1),或3整除(m+1)
所以 m-1=3k或m+1=3k(k为整数)
所以 m=3k±1
把m=3k±1代入3n+1=m²,
得 3n+1=(3k±1)²
3n+1=9k²±6k+1
3n=9k²±6k
n=3k²±2k
所以 n+1
=3k²±2k+1
=k²+k²+(k²±2k+1)
=k²+k²+(k±1)²
即 n+1能表示成 3个完全平方数的和,原命题得证
收起