f(x)=x2+x,则数列{1/fn}的前n项和为多少?我一年多没做过数列题了,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:56:45
x)KӨд0Үy1
O;W>7O'<ٱYO7L1Ɏ; 6-|8vf<զcTO`MD_`gC3G?X|ʊ=h{y*XdFv&m d邸@6
Ov/E8,gaTf$,cMm===Ʒ̓_\g
tAPvb4T4s454@-# H;X`q7edF$[WE#p "I
f(x)=x2+x,则数列{1/fn}的前n项和为多少?我一年多没做过数列题了,
f(x)=x2+x,则数列{1/fn}的前n项和为多少?
我一年多没做过数列题了,
f(x)=x2+x,则数列{1/fn}的前n项和为多少?我一年多没做过数列题了,
利用差分法
1/fn=1/(n²+n)=1/(n*(n+1))=1n-1/(n+1)
所以前n项和
Sn=(1-1/2)+(1/2-1/3)+...+(1/n-1/(n+1))
=1-1/(n+1)=n/(n+1)
f(n)=n²+n=n*(n+1)
1/f(n)=1/[n*(n+1)]=1/n-1/(n+1)
Sn=f(1)+f(2)+f(3)+······f(n)
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+······[1/n-1/(n+1)]
=1-1/2+1/2-1/3+1/3-1/4+······1/n-1/(n+1)
=1-1/(n+1)=n/(n+1)