在△ABC中,O为坐标原点,A(1,cosθ)B(sinθ,1),θ∈(0,д/2],则△OAB面积达到最大值时,θ等于多少?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 01:05:00
在△ABC中,O为坐标原点,A(1,cosθ)B(sinθ,1),θ∈(0,д/2],则△OAB面积达到最大值时,θ等于多少?
在△ABC中,O为坐标原点,A(1,cosθ)B(sinθ,1),θ∈(0,д/2],则△OAB面积达到最大值时,θ等于多少?
在△ABC中,O为坐标原点,A(1,cosθ)B(sinθ,1),θ∈(0,д/2],则△OAB面积达到最大值时,θ等于多少?
过点A作AC垂直于X轴,过点B作BD垂直于X轴,垂足为点C和点D.则△OAB的面积=三角形BDO的面积+梯形ABDC的面积-三角形AOC的面积=(1/2)sinθ+(1/2)(cosθ+1)(1-sinθ)-(1/2)cosθ=1/2-(1/4)sin2θ
因为θ∈(0,π/2],所以2θ∈(0,π]
θ在这个区间内,sin2θ的最小值为0,所以三角形面积最大,此时2θ=π,所以θ=π/2 .
在直角坐标系里,
△OAB的面积=1-(1/2)sinθ-(1/2)cosθ-(1/2)(1-cosθ)(1-sinθ)
=1/2-(1/2)sinθcosθ
=1/2-(1/4)sin2θ
θ∈(0,π/2],所以2θ∈(0,π]
上式当2θ=π时取得最大,即θ=π/2
运用向量叉乘
△OAB的面积=oA*OB=1-(1/2)sinθ-(1/2)cosθ-(1/2)(1-cosθ)(1-sinθ)
=1/2-(1/2)sinθcosθ
=1/2-(1/4)sin2θ
θ∈(0,π/2],所以2θ∈(0,π]
上式当2θ=π时取得最大,即θ=π/2
最大值为1/2