数列an满足a1=-1,且an=3a(n-1)-2n=3,求a2,a3,并证明数列(an-n)是等比数列,求an

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 15:19:28
数列an满足a1=-1,且an=3a(n-1)-2n=3,求a2,a3,并证明数列(an-n)是等比数列,求an
xJ@_ڝ ^TX`z! VkoEdR ۘLS_?AJ5rR3r>*YHnZjQyFnM7FzQ>pvKC8 -Z2V!+ 'FvĵvamH_ fnpٳ۩{sk@%Mfk5OdQ@&%Yq/d6:Qx4f;Xcd>x 

数列an满足a1=-1,且an=3a(n-1)-2n=3,求a2,a3,并证明数列(an-n)是等比数列,求an
数列an满足a1=-1,且an=3a(n-1)-2n=3,求a2,a3,并证明数列(an-n)是等比数列,求an

数列an满足a1=-1,且an=3a(n-1)-2n=3,求a2,a3,并证明数列(an-n)是等比数列,求an
a2=3a1-2+3=-2,a3=3a2-4+3=-7.
an=3a(n-1)-2n+3,则an-n=3an-3n+3,即an-n=3[a(n-1)-(n-1)].而a1-1=-2.
所以,数列{an-n}是首项为-2、公比为3的等比数列,其通项为an-n=-2*3^(n-1).
所以,an=n-2*3^(n-1)(n为正整数).