已知:a>0,a≠1,f(logax)=ax^2-1\x(a^2-1) [x>0]求f(x)备注:logax中a是底数,x是真数;ax^2-1\x(a^2-1)是ax^2-1除以x(a^2-1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 09:30:07
已知:a>0,a≠1,f(logax)=ax^2-1\x(a^2-1) [x>0]求f(x)备注:logax中a是底数,x是真数;ax^2-1\x(a^2-1)是ax^2-1除以x(a^2-1)
xPN@=]B zrXZ*5ZILVăV61]_pYjx3iߛ7oM2}t4ؐ6 횢b  جZlȉsҡ}YOgck&2!U"QD߰ޏZ2U3i/+-udK5\KY@+G6.y @b BzANir&wirCvCJ!GbS{:뷲]tu6Efh\C,@ KV\YT]\h-|bE

已知:a>0,a≠1,f(logax)=ax^2-1\x(a^2-1) [x>0]求f(x)备注:logax中a是底数,x是真数;ax^2-1\x(a^2-1)是ax^2-1除以x(a^2-1)
已知:a>0,a≠1,f(logax)=ax^2-1\x(a^2-1) [x>0]
求f(x)
备注:logax中a是底数,x是真数;ax^2-1\x(a^2-1)是ax^2-1除以x(a^2-1)

已知:a>0,a≠1,f(logax)=ax^2-1\x(a^2-1) [x>0]求f(x)备注:logax中a是底数,x是真数;ax^2-1\x(a^2-1)是ax^2-1除以x(a^2-1)
f(x)=[a^(2x+1) - 1] / [a^(x+2) - a^x]
先设 t=logax 即 x=a^t
然后将他们代入原式,将t都关成x,整理后就是上面的结果

y=logax,x=a^y,代入, f(y)=a*a^(2y)-1/[a^y(a^2-1)]